A032775 Numbers that are congruent to {0, 1, 2, 3, 5, 6} mod 7.
0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 82, 83
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Programs
-
Magma
[ n: n in [0..90] | n mod 7 in {0, 1, 2, 3, 5, 6} ]; // Vincenzo Librandi, Dec 29 2010
-
Maple
A032775:=n->(42*n-45-3*cos(n*Pi)+12*cos(n*Pi/3)-4*sqrt(3)*sin(2*n*Pi/3))/36: seq(A032775(n), n=1..100); # Wesley Ivan Hurt, Jun 15 2016
-
Mathematica
Select[Range[0, 100], MemberQ[{0, 1, 2, 3, 5, 6}, Mod[#, 7]] &] (* Wesley Ivan Hurt, Jun 15 2016 *) DeleteCases[Range[0,100],?(Mod[#,7]==4&)] (* or *) LinearRecurrence[ {1,0,0,0,0,1,-1},{0,1,2,3,5,6,7},80] (* _Harvey P. Dale, Sep 19 2020 *)
Formula
Natural numbers minus '4, 11, 18, 25, ...' (= previous term + 7).
G.f.: x^2*(1+x+x^2+2*x^3+x^4+x^5) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 15 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n > 7.
a(n) = (42*n - 45 - 3*cos(n*Pi) + 12*cos(n*Pi/3) - 4*sqrt(3)*sin(2*n*Pi/3))/36.
a(6k) = 7k-1, a(6k-1) = 7k-2, a(6k-2) = 7k-4, a(6k-3) = 7k-5, a(6k-4) = 7k-6, a(6k-5) = 7k-7. (End)
Comments