cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033052 a(1) = 1, a(2n) = 16a(n), a(2n+1) = a(2n)+1.

Original entry on oeis.org

0, 1, 16, 17, 256, 257, 272, 273, 4096, 4097, 4112, 4113, 4352, 4353, 4368, 4369, 65536, 65537, 65552, 65553, 65792, 65793, 65808, 65809, 69632, 69633, 69648, 69649, 69888, 69889, 69904, 69905, 1048576, 1048577, 1048592, 1048593, 1048832
Offset: 0

Views

Author

Keywords

Comments

Numbers whose set of base 16 digits is {0,1}.
a(n) = Xpower(n,4). - Antti Karttunen, Apr 26 1999
Sums of distinct powers of 16.
For every nonnegative n, A000695(n) is a unique sum of the form a(k) + 4a(l). Thus every nonnegative n is a unique sum of the form a(p) + 2a(q) + 4a(r) + 8a(s). This gives a one-to-one map of the set N_0 of all nonnegative integers to (N_0)^4. Furthermore, if, for a fixed positive integer m, to consider all sums of distinct powers of 4^m, then one can obtain a one-to-one map of the set N_0 to (N_0)^(2^m). - Vladimir Shevelev, Nov 14 2008

Crossrefs

Column 4 of A048723. Row 15 of array A104257.

Programs

Formula

a(n) = Sum_{i=0..m} d(i)*16^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
a(n) = A097262(n)/15.
a(2n) = 16*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*16^k. - Philippe Deléham, Oct 19 2011
G.f.: (1/(1 - x))*Sum_{k>=0} 16^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017
a(n) = A000695(A000695(n)). - Alan Michael Gómez Calderón, Mar 23 2025

Extensions

Extended by Ray Chandler, Aug 03 2004
Simpler definition from Ralf Stephan, Jun 18 2005