cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033113 Base-3 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.

Original entry on oeis.org

1, 3, 10, 30, 91, 273, 820, 2460, 7381, 22143, 66430, 199290, 597871, 1793613, 5380840, 16142520, 48427561, 145282683, 435848050, 1307544150, 3922632451, 11767897353, 35303692060, 105911076180, 317733228541, 953199685623
Offset: 1

Views

Author

Keywords

Comments

Written in base 3, this yields A056830. - M. F. Hasler, Oct 05 2018

Crossrefs

Programs

  • Magma
    [Round(3^(n+1)/8): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
  • Maple
    a[0]:=0: a[1]:=1: for n from 2 to 50 do a[n]:=2*a[n-1]+3*a[n-2]+1 od: seq(a[n], n=1..33);# Zerinvary Lajos, Dec 14 2008
    g:=x*(1/(1-3*x)/(1-x))/(1+x): gser:=series(g, x=0, 43): seq(coeff(gser, x, n), n=1..30);# Zerinvary Lajos, Jan 11 2009
    A033113 := proc(n) (9*3^(n-1)-(-1)^n-2)/8 ; end proc: # R. J. Mathar, Jan 08 2011
  • Mathematica
    Join[{a=1,b=3},Table[c=2*b+3*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2011 *)
    Module[{nn=30,d},d=PadRight[{},nn,{1,0}];Table[FromDigits[Take[d,n],3],{n,nn}]] (* or *) LinearRecurrence[{3,1,-3},{1,3,10},30] (* Harvey P. Dale, May 24 2014 *)
  • PARI
    a(n)=3^n*3\8 \\ Simplified by M. F. Hasler, Oct 06 2018
    
  • PARI
    A033113(n)=3^(n+1)>>3 \\ M. F. Hasler, Oct 05 2018
    

Formula

a(n) = A039300(n)-1.
a(n)+a(n+1) = A003462(n+1).
a(n) = 3*a(n-1) + a(n-2) -3*a(n-3). - R. J. Mathar, Jun 28 2010
From Paul Barry, Nov 12 2003: (Start)
G.f.: x/((1-x)*(1+x)*(1-3*x)).
a(n) = 2*a(n-1) + 3*a(n-2) + 1.
Partial sums of A015518. (End)
E.g.f.: (1/2)*exp(x)*(sinh(x))^2. - Paul Barry, Mar 12 2003
a(n) = Sum_{k=0..floor(n/2)} C(n+2, 2k+2)*4^k. - Paul Barry, Aug 24 2003
a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k); a(n) = Sum_{k=0..n} Sum_{j=0..k} (-1)^(j+k)*3^j. - Paul Barry, Nov 12 2003
Convolution of A000244 and A059841 (3^n and periodic{1, 0}). a(n) = Sum_{k=0..n} (1 + (-1)^(n-k))*3^k/2. - Paul Barry, Jul 19 2004
a(n) = round(3^(n+1)/8) = floor((3^(n+1)-1)/8) = ceiling((3^(n+1)-3)/8) = round((3^(n+1)-3)/8). a(n) = a(n-2) + 3^(n-1), n > 2. - Mircea Merca, Dec 27 2010
a(n) = floor((3^(n+1))/4) / 2 = A081251(n)/2, n >= 1. - Wolfdieter Lang, Apr 13 2012