cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033117 Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.

Original entry on oeis.org

1, 7, 50, 350, 2451, 17157, 120100, 840700, 5884901, 41194307, 288360150, 2018521050, 14129647351, 98907531457, 692352720200, 4846469041400, 33925283289801, 237476983028607, 1662338881200250, 11636372168401750, 81454605178812251, 570182236251685757, 3991275653761800300
Offset: 1

Views

Author

Keywords

Comments

Partial sums of round(7^n/8), A015552. - Mircea Merca, Dec 28 2010

Crossrefs

Cf. A015552.

Programs

  • Magma
    [Floor((7*7^n-1)/48): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
    
  • Magma
    I:=[1, 7, 50]; [n le 3 select I[n] else 7*Self(n-1)+Self(n-2)-7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Mar 26 2014
  • Maple
    A033117 := proc(n) add( round(7^i/8),i=0..n) ; end proc:
  • Mathematica
    Join[{a=1,b=7},Table[c=6*b+7*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
    Module[{nn=30,c},c=PadRight[{},nn,{1,0}];Table[FromDigits[Take[c,n],7],{n,nn}]] (* or *) LinearRecurrence[{7,1,-7},{1,7,50},30] (* Harvey P. Dale, Feb 13 2014 *)
    CoefficientList[Series[1/((1 - x) (1 - 7 x) (1 + x)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)

Formula

G.f.: x / ((1-x)*(1-7*x)*(1+x)).
a(n) = 7*a(n-1) + a(n-2) - 7*a(n-3).
a(n) = (7*7^n - 4 - 3*(-1)^n)/48. - Bruno Berselli, Jan 19 2011
a(n) = (1/6)*floor(7^(n+1)/8) = floor((7*7^n-1)/48) = ceiling((7*7^n-7)/48) = round((7*7^n-7)/48) = round((7*7^n-4)/48); a(n) = a(n-2) + 7^(n-1), n > 2. - Mircea Merca, Dec 28 2010