A033117 Base 7 digits are, in order, the first n terms of the periodic sequence with initial period 1,0.
1, 7, 50, 350, 2451, 17157, 120100, 840700, 5884901, 41194307, 288360150, 2018521050, 14129647351, 98907531457, 692352720200, 4846469041400, 33925283289801, 237476983028607, 1662338881200250, 11636372168401750, 81454605178812251, 570182236251685757, 3991275653761800300
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (7,1,-7).
Crossrefs
Cf. A015552.
Programs
-
Magma
[Floor((7*7^n-1)/48): n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
-
Magma
I:=[1, 7, 50]; [n le 3 select I[n] else 7*Self(n-1)+Self(n-2)-7*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Mar 26 2014
-
Maple
A033117 := proc(n) add( round(7^i/8),i=0..n) ; end proc:
-
Mathematica
Join[{a=1,b=7},Table[c=6*b+7*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *) Module[{nn=30,c},c=PadRight[{},nn,{1,0}];Table[FromDigits[Take[c,n],7],{n,nn}]] (* or *) LinearRecurrence[{7,1,-7},{1,7,50},30] (* Harvey P. Dale, Feb 13 2014 *) CoefficientList[Series[1/((1 - x) (1 - 7 x) (1 + x)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 26 2014 *)
Formula
G.f.: x / ((1-x)*(1-7*x)*(1+x)).
a(n) = 7*a(n-1) + a(n-2) - 7*a(n-3).
a(n) = (7*7^n - 4 - 3*(-1)^n)/48. - Bruno Berselli, Jan 19 2011
a(n) = (1/6)*floor(7^(n+1)/8) = floor((7*7^n-1)/48) = ceiling((7*7^n-7)/48) = round((7*7^n-7)/48) = round((7*7^n-4)/48); a(n) = a(n-2) + 7^(n-1), n > 2. - Mircea Merca, Dec 28 2010
Comments