A033183 a(n) = number of pairs (p,q) such that 4*p + 9*q = n.
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, -1).
Crossrefs
Cf. A033182.
Programs
-
Mathematica
CoefficientList[Series[1/((1-x^4)(1-x^9)),{x,0,80}],x] (* or *) LinearRecurrence[{0,0,0,1,0,0,0,0,1,0,0,0,-1}, {1,0,0,0,1,0,0,0,1,1,0,0,1}, 80] (* Harvey P. Dale, Oct 13 2012 *)
Formula
a(n) = [ 7 n/9 ]+1+[ -3 n/4 ].
G.f.: 1/((1-x^4)*(1-x^9)). - Vladeta Jovovic, Nov 12 2004
a(n) = a(n-4) + a(n-9) - a(n-13). - R. J. Mathar, Dec 04 2011
Comments