cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033183 a(n) = number of pairs (p,q) such that 4*p + 9*q = n.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2
Offset: 0

Views

Author

Michel Tixier (tixier(AT)dyadel.net)

Keywords

Comments

From Reinhard Zumkeller, Nov 07 2009: (Start)
In other words: number of partitions into 4 or 9;
a(n) <= A078134(n); a(A078135(n)) = 0;
a(A167632(n)) = n and a(m) < n for m < A167632(n). (End)

Crossrefs

Cf. A033182.

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x^4)(1-x^9)),{x,0,80}],x] (* or  *) LinearRecurrence[{0,0,0,1,0,0,0,0,1,0,0,0,-1}, {1,0,0,0,1,0,0,0,1,1,0,0,1}, 80] (* Harvey P. Dale, Oct 13 2012 *)

Formula

a(n) = [ 7 n/9 ]+1+[ -3 n/4 ].
G.f.: 1/((1-x^4)*(1-x^9)). - Vladeta Jovovic, Nov 12 2004
a(n) = a(n-4) + a(n-9) - a(n-13). - R. J. Mathar, Dec 04 2011