cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A167632 Smallest m such that A033183(m) = n.

Original entry on oeis.org

0, 4, 36, 72, 108, 144, 180, 216, 252, 288, 324, 360, 396, 432, 468, 504, 540, 576, 612, 648, 684, 720, 756, 792, 828, 864, 900, 936, 972, 1008, 1044, 1080, 1116, 1152, 1188, 1224, 1260, 1296, 1332, 1368, 1404, 1440, 1476, 1512, 1548, 1584, 1620, 1656, 1692
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 07 2009

Keywords

Comments

A033183(a(n)) = n and A033183(m) < n for m < a(n);
for n>1: a(n) = A044102(n-1).

A078134 Number of ways to write n as sum of squares > 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 2, 1, 1, 0, 2, 3, 1, 1, 2, 3, 1, 1, 3, 3, 3, 1, 5, 3, 3, 1, 5, 5, 3, 3, 5, 7, 3, 3, 6, 8, 6, 3, 9, 8, 8, 3, 9, 10, 9, 6, 9, 14, 9, 8, 11, 15, 12, 9, 15, 15, 16, 9, 18, 18, 18, 13, 19, 23, 18, 17, 21, 28, 22, 19, 26, 30, 28, 19, 31, 34, 34
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 19 2002

Keywords

Comments

a(A078135(n))=0; a(A078136(n))=1; a(A078137(n))>0;
Conjecture (lower bound): for all k exists b(k) such that a(n)>k for n>b(k); see b(0)=A078135(12)=23 and b(1)=A078136(15)=39. This is true - see comments by Hieronymus Fischer.
Also first difference of A001156 (number of partitions of n into squares). - Wouter Meeussen, Oct 22 2005
Comments from Hieronymus Fischer, Nov 11 2007 (Start): First statement of monotony: a(n+k^2)>=a(n) for all k>1. Proof: we restrict ourselves on a(n)>0 (the case a(n)=0 is trivial). Let T(i), 1<=i<=a(n), be the a(n) different sum expressions of squares >1 representing n. Then, adding k^2 to those expressions, we get a(n) sums of squares T(i)+k^2, obviously representing n+k^2, thus a(n+k^2) cannot be less than a(n).
Second statement of monotony: a(n+m)>=max(a(n),a(m)) for all m with a(m)>1. Proof: let T(i), 1<=i<=a(n), be the a(n) different sum expressions of squares >1 representing n; let S(i), 1<=i<=a(m), be the a(m) different sum expressions of squares >1 representing m. Then, adding those expressions, we get a(n) sums of squares T(i)+S(1), representing n+m, further we get a(m) sums T(1)+S(i), also representing n+m, thus a(n+m) cannot be less than the maximum of a(n) and a(m).
The author's conjecture holds true. Proof by induction: b(0) exists; if b(k) exists, then a(j)>k for all j>b(k). Setting m:=b(k)+1, we find that there are k+1 sums B(0,i) of squares >1, 1<=i<=k+1, with m=B(0,i). Further there are k+1 such sum expressions B(1,i), B(2,i) and B(3,i), 1<=i<=k+1, representing m+1, m+2 and m+3, respectively. For n>b(k) we have n=m+4*floor((n-m)/4)+(n-m) mod 4.
Thus n=m+r+s*2^2, where r=0,1,2 or 3. Hence n can be written B(r,i)+s*2^2 and there are k+1 such representations. Let q be the maximal number (to be squared) occurring as a term within those sum expressions B(r,i), 0<=r<=3,1<=i<=k+1. We select a number p>q and we set c:=b(k)+p^2. For n>c, we have the k+1 representations B(r(n),i)+s(n)*2^2.
Additionally, for n-p^2 (which is >b(k)) there are also k+1 representations B(r_p,i)+s_p*2^2, where r_p:=r(n-p^2), s_p:=s(n-p^2). Thus n can be written B(r(n),i)+s(n)*2^2, 1<=i<=k+1 and B(r_p,i)+s_p*2^2+p^2, 1<=i<=k+1.
By choice of p all these sum representations of n are different, which implies, that there are 2k+2 such representations. It follows a(n)>2k+2>k+1 for all n>c, which implies, that b(k+1) exists.
A more precise formulation of the author's conjecture is "b(k):=min( n | a(j)>k for all j>n) exists for all k>=0". (End)
A033183(n) <= a(n). [From Reinhard Zumkeller, Nov 07 2009]

Examples

			a(42)=3: 2*3^2+6*2^2 = 4^2+2*3^2+2*2^2 = 5^2+3^2+2*2^2.
		

Crossrefs

See A134754 for the sequence representing b(k).

Programs

  • Haskell
    a078134 = p $ drop 2 a000290_list where
       p _          0 = 1
       p ks'@(k:ks) x = if x < k then 0 else p ks' (x - k) + p ks x
    -- Reinhard Zumkeller, May 04 2013
  • Mathematica
    Join[{1}, Table[Length[PowersRepresentations[n, n, 2]], {n, 1, 90}]] // Differences
    (* or *)
    m = 91; CoefficientList[Product[1/(1 - x^(k^2)), {k, 1, m}] + O[x]^m, x] // Differences (* Jean-François Alcover, Mar 01 2019 *)

Formula

a(n) = 1/n*Sum_{k=1..n} (A035316(k)-1)*a(n-k), a(0) = 1. - Vladeta Jovovic, Nov 20 2002
G.f. g(x)=product{k>1, 1/(1-x^(k^2))}-1 = 1/((1-x^4)*(1-x^9)*(1-x^16)*(1-x^25)*(1-x^36)*...)-1. - Hieronymus Fischer, Nov 19 2007
a(n) ~ exp(3*Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3) / 2^(4/3)) * Zeta(3/2)^(4/3) / (2^(11/3) * sqrt(3) * Pi^(5/6) * n^(11/6)). - Vaclav Kotesovec, Jan 05 2017

A078135 Numbers which cannot be written as a sum of squares > 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 19, 23
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 19 2002

Keywords

Comments

Numbers such that A078134(n)=0.
"Numbers which cannot be written as sum of squares > 1" is equivalent to "Numbers which cannot be written as sum of squares of primes." Equivalently, numbers which can be written as the sum of nonzero squares can also be written as sum of the squares of primes." cf. A090677 = number of ways to partition n into sums of squares of primes. - Jonathan Vos Post, Sep 20 2006
The sequence is finite with a(12)=23 as last member. Proof: When k=a^2+b^2+..., k+4 = 2^2+a^2+b^2+... If k can be written as sum of the squares of primes, k+4 also has this property. As 24,25,26,27 have the property, by induction, all numbers > 23 can be written as sum of squares>1. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Apr 07 2007
Also, numbers which cannot be written as sum of squares of 2 and 3 (see A078137 for the proof). Explicit representation as sum of squares of primes, or rather of squares of 2 and 3, for numbers m>23: we have m=c*2^2+d*3^2, where c:=(floor(m/4) - 2*(m mod 4))>=0, d:=m mod 4. For that, the finiteness of the sequence is proved constructively. - Hieronymus Fischer, Nov 11 2007
Also numbers n such that every integer partition of n contains a squarefree number. For example, 21 does not belong to the sequence because there are integer partitions of 21 containing no squarefree numbers, namely: (12,9), (9,8,4), (9,4,4,4). - Gus Wiseman, Dec 14 2018

Crossrefs

Programs

  • Mathematica
    nn=100;
    ser=Product[If[SquareFreeQ[n],1,1/(1-x^n)],{n,nn}];
    Join@@Position[CoefficientList[Series[ser,{x,0,nn}],x],0]-1 (* Gus Wiseman, Dec 14 2018 *)

Formula

A090677(a(n)) = 0. - Jonathan Vos Post, Sep 20 2006 [corrected by Joerg Arndt, Dec 16 2018]
A033183(a(n)) = 0. - Reinhard Zumkeller, Nov 07 2009

A044102 Multiples of 36.

Original entry on oeis.org

0, 36, 72, 108, 144, 180, 216, 252, 288, 324, 360, 396, 432, 468, 504, 540, 576, 612, 648, 684, 720, 756, 792, 828, 864, 900, 936, 972, 1008, 1044, 1080, 1116, 1152, 1188, 1224, 1260, 1296, 1332, 1368, 1404, 1440, 1476, 1512, 1548, 1584, 1620, 1656, 1692, 1728
Offset: 0

Views

Author

Keywords

Comments

Also, k such that Fibonacci(k) mod 27 = 0. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 18 2004
A033183(a(n)) = n+1. - Reinhard Zumkeller, Nov 07 2009
A122841(a(n)) > 1 for n > 0. - Reinhard Zumkeller, Nov 10 2013
Sum of the numbers from 4*(n-1) to 4*(n+1). - Bruno Berselli, Oct 25 2018

Crossrefs

Programs

Formula

G.f.: 36*x/(1 - x)^2.
a(n) = A167632(n+1). - Reinhard Zumkeller, Nov 07 2009
a(n) = 36*n. - Vincenzo Librandi, Jan 26 2011
From Elmo R. Oliveira, Apr 10 2025: (Start)
E.g.f.: 36*x*exp(x).
a(n) = 18*A005843(n) = 2*A008600(n).
a(n) = 2*a(n-1) - a(n-2). (End)

A033182 Number of pairs (p,q) such that 5*p + 6*q = n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3
Offset: 0

Views

Author

Michel Tixier (tixier(AT)dyadel.net)

Keywords

Comments

Number of partitions of n into parts 5 and 6. - Seiichi Manyama, Jun 14 2017

Crossrefs

Cf. A033183.

Programs

  • Magma
    [Floor(n/5)-Floor((n-1)/6): n in [0..100]]; // Vincenzo Librandi, Oct 13 2013
  • Mathematica
    nn = 86; t = Table[0, {nn}]; Do[m = 5*p + 6*q; If[0 < m <= nn, t[[m]]++], {p, 0, nn/5}, {q, 0, nn/6}]; Join[{1}, t] (* T. D. Noe, Oct 07 2013 *)

Formula

a(n) = [ 5*n/6 ] + 1 + [ -4*n/5 ].
a(n) = floor(n/5) - floor((n-1)/6). - Mircea Merca, Oct 11 2013
Showing 1-5 of 5 results.