cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A008588 Nonnegative multiples of 6.

Original entry on oeis.org

0, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 102, 108, 114, 120, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 222, 228, 234, 240, 246, 252, 258, 264, 270, 276, 282, 288, 294, 300, 306, 312, 318, 324, 330, 336, 342, 348
Offset: 0

Views

Author

Keywords

Comments

For n > 3, the number of squares on the infinite 3-column half-strip chessboard at <= n knight moves from any fixed point on the short edge.
Second differences of A000578. - Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
A008615(a(n)) = n. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A001018(n). - Reinhard Zumkeller, Feb 24 2009
These numbers can be written as the sum of four cubes (i.e., 6*n = (n+1)^3 + (n-1)^3 + (-n)^3 + (-n)^3). - Arkadiusz Wesolowski, Aug 09 2013
A122841(a(n)) > 0 for n > 0. - Reinhard Zumkeller, Nov 10 2013
Surface area of a cube with side sqrt(n). - Wesley Ivan Hurt, Aug 24 2014
a(n) is representable as a sum of three but not two consecutive nonnegative integers, e.g., 6 = 1 + 2 + 3, 12 = 3 + 4 + 5, 18 = 5 + 6 + 7, etc. (see A138591). - Martin Renner, Mar 14 2016 (Corrected by David A. Corneth, Aug 12 2016)
Numbers with three consecutive divisors: for some k, each of k, k+1, and k+2 divide n. - Charles R Greathouse IV, May 16 2016
Numbers k for which {phi(k),phi(2k),phi(3k)} is an arithmetic progression. - Ivan Neretin, Aug 12 2016

References

  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 81.

Crossrefs

Essentially the same as A008458.
Cf. A044102 (subsequence).

Programs

Formula

From Vincenzo Librandi, Dec 24 2010: (Start)
a(n) = 6*n = 2*a(n-1) - a(n-2).
G.f.: 6*x/(1-x)^2. (End)
a(n) = Sum_{k>=0} A030308(n,k)*6*2^k. - Philippe Deléham, Oct 24 2011
a(n) = Sum_{k=2n-1..2n+1} k. - Wesley Ivan Hurt, Nov 22 2015
From Ilya Gutkovskiy, Aug 12 2016: (Start)
E.g.f.: 6*x*exp(x).
Convolution of A010722 and A057427.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/6 = A002162*A020793. (End)
a(n) = 6 * A001477(n). - David A. Corneth, Aug 12 2016

A122841 Greatest k such that 6^k divides n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 13 2006

Keywords

Comments

See A054895 for the partial sums. - Hieronymus Fischer, Jun 08 2012

Crossrefs

Programs

  • Haskell
    a122841 = f 0 where
       f y x = if r > 0 then y else f (y + 1) x'
               where (x', r) = divMod x 6
    -- Reinhard Zumkeller, Nov 10 2013
    
  • Mathematica
    Table[IntegerExponent[n, 6], {n, 1, 100}] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n) = valuation(n, 6); \\ Michel Marcus, Jan 17 2022

Formula

From Hieronymus Fischer, Jun 03 2012: (Start)
With m = floor(log_6(n)), frac(x) = x-floor(x):
a(n) = Sum_{j=1..m} (1 - ceiling(frac(n/6^j))).
a(n) = m + Sum_{j=1..m} (floor(-frac(n/6^j))).
a(n) = A054895(n) - A054895(n-1).
G.f.: Sum_{j>0} x^6^j/(1-x^6^j). (End)
a(A047253(n)) = 0; a(A008588(n)) > 0; a(A044102(n)) > 1. - Reinhard Zumkeller, Nov 10 2013
6^a(n) = A234959(n), n >= 1. - Wolfdieter Lang, Jun 30 2014
Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/5. - Amiram Eldar, Jan 17 2022
a(n) = min(A007814(n), A007949(n)). - Jianing Song, Jul 23 2022

A008600 Multiples of 18.

Original entry on oeis.org

0, 18, 36, 54, 72, 90, 108, 126, 144, 162, 180, 198, 216, 234, 252, 270, 288, 306, 324, 342, 360, 378, 396, 414, 432, 450, 468, 486, 504, 522, 540, 558, 576, 594, 612, 630, 648, 666, 684, 702, 720, 738, 756, 774, 792, 810, 828, 846, 864, 882, 900, 918, 936
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: 18*x/(x-1)^2. - Vincenzo Librandi, Jun 10 2013
From Elmo R. Oliveira, Apr 10 2025: (Start)
E.g.f.: 18*x*exp(x).
a(n) = 18*n = 2*A008591(n) = A044102(n)/2.
a(n) = 2*a(n-1) - a(n-2). (End)

A208379 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 1 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 10, 36, 36, 8, 16, 100, 72, 64, 10, 26, 256, 240, 108, 100, 12, 42, 676, 704, 420, 144, 144, 14, 68, 1764, 2080, 1344, 640, 180, 196, 16, 110, 4624, 6216, 4212, 2176, 900, 216, 256, 18, 178, 12100, 18496, 13860, 7072, 3200, 1200, 252, 324, 20, 288
Offset: 1

Views

Author

R. H. Hardin Feb 25 2012

Keywords

Comments

Table starts
..2...4...6...10...16....26....42.....68.....110.....178......288......466
..4..16..36..100..256...676..1764...4624...12100...31684....82944...217156
..6..36..72..240..704..2080..6216..18496...55000..163760...487296..1450192
..8..64.108..420.1344..4212.13860..44880..144540..468852..1517184..4906980
.10.100.144..640.2176..7072.25200..87040..296560.1028128..3545856.12198016
.12.144.180..900.3200.10660.40740.148240..526900.1931300..7015680.25336420
.14.196.216.1200.4416.14976.60984.231744..851400.3276624.12438144.46737936
.16.256.252.1540.5824.20020.86436.340816.1285900.5170900.20393856.79220932

Examples

			Some solutions for n=4 k=3
..0..1..0....0..1..1....1..1..0....0..0..1....0..0..1....1..0..1....1..0..0
..1..1..0....0..1..1....1..1..0....0..1..1....1..0..1....1..1..0....1..0..0
..1..1..0....0..0..1....1..1..0....0..1..0....0..0..1....0..1..0....1..0..0
..1..0..0....0..0..1....1..1..0....0..1..0....0..0..1....0..1..0....1..0..0
		

Crossrefs

Column 1 is A004275(n+1)
Column 2 is A016742
Column 3 is A044102(n-1) for n>1
Row 1 is A006355(n+2)
Row 2 is A206981
Row 3 is A207840

Formula

Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 36*n - 36 for n>1
k=4: a(n) = 20*n^2 + 40*n - 60 for n>1
k=5: a(n) = 96*n^2 - 32*n - 64 for n>1
k=6: a(n) = 364*n^2 - 416*n + 52 for n>1
k=7: a(n) = 84*n^3 + 840*n^2 - 1344*n + 420 for n>1
Empirical for row n:
n=1: a(k)=a(k-1)+a(k-2)
n=2: a(k)=2*a(k-1)+2*a(k-2)-a(k-3)
n=3: a(k)=a(k-1)+4*a(k-2)+5*a(k-3)+2*a(k-4)-a(k-5)+a(k-6) for k>8
n=4: a(k)=a(k-1)+4*a(k-2)+9*a(k-3)+5*a(k-4)-2*a(k-5)+4*a(k-6) for k>8
n=5: a(k)=a(k-1)+4*a(k-2)+13*a(k-3)+8*a(k-4)-3*a(k-5)+9*a(k-6) for k>8
n=6: a(k)=a(k-1)+4*a(k-2)+17*a(k-3)+11*a(k-4)-4*a(k-5)+16*a(k-6) for k>8
n=7: a(k)=a(k-1)+4*a(k-2)+21*a(k-3)+14*a(k-4)-5*a(k-5)+25*a(k-6) for k>8

A249726 Numbers n such that there is a multiple of 36 on row n of Pascal's triangle with property that it is also the least multiple of 4 and the least multiple of 9 on the same row.

Original entry on oeis.org

36, 72, 73, 108, 110, 144, 145, 147, 180, 216, 217, 218, 221, 252, 288, 289, 291, 295, 324, 326, 360, 361, 396, 432, 433, 434, 435, 437, 443, 468, 504, 505, 540, 542, 576, 577, 579, 583, 612, 648, 649, 650, 653, 684, 720, 721, 723, 756, 758, 792, 793, 828, 864, 865, 866, 867, 869, 871, 875, 887, 900, 936, 937, 972, 974, 1008, 1009, 1011, 1044, 1080
Offset: 1

Views

Author

Antti Karttunen, Nov 04 2014

Keywords

Comments

All n such that both on row n of A034931 (Pascal's triangle reduced modulo 4) and on row n of A095143 (Pascal's triangle reduced modulo 9) there is at least one zero and the distance from the edge to the nearest zero is same on both rows.

Crossrefs

Subsequence of A249724.
A044102 is a subsequence (after zero).
Natural numbers (A000027) is a disjoint union of the sequences A048278, A249722, A249723 and A249726.

Programs

  • PARI
    A249726list(upto_n) = { my(i=0, n=0); while(i
    				

A139609 a(n) = 36*n + 9.

Original entry on oeis.org

9, 45, 81, 117, 153, 189, 225, 261, 297, 333, 369, 405, 441, 477, 513, 549, 585, 621, 657, 693, 729, 765, 801, 837, 873, 909, 945, 981, 1017, 1053, 1089, 1125, 1161, 1197, 1233, 1269, 1305, 1341, 1377, 1413, 1449, 1485, 1521, 1557, 1593, 1629, 1665, 1701
Offset: 0

Views

Author

Omar E. Pol, Apr 27 2008

Keywords

Comments

Numbers of the 9th column of positive numbers in the square array of nonnegative and polygonal numbers A139600.

Crossrefs

Programs

Formula

a(n) = A057145(n+2,9).
G.f.: 9*(1+3*x)/(x-1)^2. - R. J. Mathar, Jul 28 2016
From Elmo R. Oliveira, Apr 16 2024: (Start)
E.g.f.: 9*exp(x)*(1 + 4*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2.
a(n) = 9*A016813(n) = A044102(n) + 9 = A152994(n+1) - A152994(n). (End)

A085959 Multiples of 37.

Original entry on oeis.org

0, 37, 74, 111, 148, 185, 222, 259, 296, 333, 370, 407, 444, 481, 518, 555, 592, 629, 666, 703, 740, 777, 814, 851, 888, 925, 962, 999, 1036, 1073, 1110, 1147, 1184, 1221, 1258, 1295, 1332, 1369, 1406, 1443, 1480, 1517, 1554, 1591, 1628, 1665, 1702, 1739
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 17 2003

Keywords

Comments

If a(k) = 100*u + 10*v + w with 0 <= u, v, w < 10, then 100*v + 10*w + u is also a term.
Numbers for which the sum of "digits" base 1000 is divisible by 37, since 999 = 3^3 * 37. For instance, 10089601558 gives 10 + 089 + 601 + 558 = 1258, 1 + 258 = 259 = 7 * 37. - Daniel Forgues, Feb 22 2016

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1986.

Crossrefs

Cf. A044102.

Programs

Formula

a(n) = a(n-1) + 37; a(0)=0.
G.f.: 37*x/(1-x)^2. - Vincenzo Librandi, Feb 23 2016
From Elmo R. Oliveira, Apr 10 2025: (Start)
E.g.f.: 37*x*exp(x).
a(n) = 37*n.
a(n) = 2*a(n-1) - a(n-2). (End)

A305548 a(n) = 27*n.

Original entry on oeis.org

0, 27, 54, 81, 108, 135, 162, 189, 216, 243, 270, 297, 324, 351, 378, 405, 432, 459, 486, 513, 540, 567, 594, 621, 648, 675, 702, 729, 756, 783, 810, 837, 864, 891, 918, 945, 972, 999, 1026, 1053, 1080, 1107, 1134, 1161, 1188, 1215, 1242, 1269, 1296, 1323, 1350, 1377, 1404, 1431, 1458, 1485, 1512
Offset: 0

Views

Author

Eric Chen, Jun 05 2018

Keywords

Crossrefs

For a(n) = k*n: A001489 (k=-1), A000004 (k=0), A001477 (k=1), A005843 (k=2), A008585 (k=3), A008591 (k=9), A008607 (k=25), A252994 (k=26), this sequence (k=27), A135628 (k=28), A195819 (k=29), A249674 (k=30), A135631 (k=31), A174312 (k=32), A044102 (k=36), A085959 (k=37), A169823 (k=60), A152691 (k=64).

Programs

  • Mathematica
    Range[0,2000,27]
  • PARI
    a(n)=27*n

Formula

a(n) = 27*n.
a(n) = A008585(A008591(n)) = A008591(A008585(n)).
G.f.: 27*x/(x-1)^2.
From Elmo R. Oliveira, Apr 10 2025: (Start)
E.g.f.: 27*x*exp(x).
a(n) = 2*a(n-1) - a(n-2). (End)

A167632 Smallest m such that A033183(m) = n.

Original entry on oeis.org

0, 4, 36, 72, 108, 144, 180, 216, 252, 288, 324, 360, 396, 432, 468, 504, 540, 576, 612, 648, 684, 720, 756, 792, 828, 864, 900, 936, 972, 1008, 1044, 1080, 1116, 1152, 1188, 1224, 1260, 1296, 1332, 1368, 1404, 1440, 1476, 1512, 1548, 1584, 1620, 1656, 1692
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 07 2009

Keywords

Comments

A033183(a(n)) = n and A033183(m) < n for m < a(n);
for n>1: a(n) = A044102(n-1).

A351381 Table read by downward antidiagonals: T(n,k) = n*(k+1)^2.

Original entry on oeis.org

4, 9, 8, 16, 18, 12, 25, 32, 27, 16, 36, 50, 48, 36, 20, 49, 72, 75, 64, 45, 24, 64, 98, 108, 100, 80, 54, 28, 81, 128, 147, 144, 125, 96, 63, 32, 100, 162, 192, 196, 180, 150, 112, 72, 36, 121, 200, 243, 256, 245, 216, 175, 128, 81, 40, 144, 242, 300, 324, 320, 294, 252, 200, 144, 90, 44
Offset: 1

Views

Author

Bernard Schott, Mar 28 2022

Keywords

Comments

When m and k are both positive integers and k | m, with m/k = n, then T(n,k) = S(m,k) = (m+k) + (m-k) + (m*k) + (m/k) = S(n*k,k) = n*(k+1)^2, problem proposed by Yakov Perelman.
All terms are nonsquarefree (A013929).

Examples

			Table begins:
  n \ k |   1      2      3      4      5      6      7      8      9     10
  ----------------------------------------------------------------------------
     1  |   4      9     16      25    36     49     64     81    100    121
     2  |   8     18     32      50    72     98    128    162    200    242
     3  |  12     27     48      75   108    147    192    243    300    363
     4  |  16     36     64     100   144    196    256    324    400    484
     5  |  20     45     80     125   180    245    320    405    500    605
     6  |  24     54     96     150   216    294    384    486    600    726
     7  |  28     63    112     175   252    343    448    567    700    847
     8  |  32     72    128     200   288    392    512    648    800    968
     9  |  36     81    144     225   324    441    576    729    900   1089
    10  |  40     90    160     250   360    490    640    810   1000   1210
  ............................................................................
T(3,4) = 75 = 3*(4+1)^2 corresponds to S(3*4,4) = S(12,4) = (12+4) + (12-4) + (12*4) + 12/4 = 75.
S(10,5) = (10+5) + (10-5) + (10*5) + (10/5) = T(10/5,5) = T(2,5) = 72.
		

References

  • I. Perelman, L'Algèbre Récréative, Chapitre IV, Les équations de Diophante, Deux nombres et quatre opérations, Editions en langues étrangères, Moscou, 1959, pp. 101-102.
  • Ya. I. Perelman, Algebra Can Be Fun, Chapter IV, Diophantine Equations, Two numbers and four operations, Mir Publishers Moscow, 1979, pp. 131-132.

Crossrefs

Cf. A013929.
Cf. A000290 \ {0,1} (row 1), A001105 \ {0,2} (row 2), A033428 \ {0,3} (row 3), A016742 \ {0,4} (row 4), A033429 \ {0,5} (row 5), A033581 \ {0,6} (row 6).
Cf. A008586 \ {0} (column 1), A008591 \ {0} (column 2), A008598 \ {0} (column 3), A008607 \ {0} (column 4), A044102 \ {0} (column 5).
Cf. A045991 \ {0} (diagonal).

Programs

  • Mathematica
    T[n_, k_] := n*(k + 1)^2; Table[T[k, n - k + 1], {n, 1, 11}, {k, 1, n}] // Flatten (* Amiram Eldar, Mar 29 2022 *)

Formula

T(n,k) = n*(k+1)^2.
T(n,n) = (n+1)^3 - (n+1)^2 = A045991(n+1) for n >= 1.
G.f.: x*(1 + y)/((1 - x)^2*(1 - y)^3). - Stefano Spezia, Mar 31 2022
Showing 1-10 of 16 results. Next