cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033192 a(n) = binomial(Fibonacci(n) + 1, 2).

Original entry on oeis.org

0, 1, 1, 3, 6, 15, 36, 91, 231, 595, 1540, 4005, 10440, 27261, 71253, 186355, 487578, 1276003, 3339820, 8742471, 22885995, 59912931, 156848616, 410626153, 1075018896, 2814412825, 7368190921, 19290113571, 50502074766, 132215989335, 346145696820, 906220783315
Offset: 0

Views

Author

Simon P. Norton

Keywords

Comments

a(n) is the sum of n-th row in Wythoff array A003603. [Reinhard Zumkeller, Jan 26 2012]
A subsequence of the triangular numbers A000217. In fact, binomial(F(n)+1,2) = A000217(F(n)). - M. F. Hasler, Jan 27 2012

Crossrefs

Programs

  • Maple
    a:= n-> (f-> f*(f+1)/2)((<<0|1>, <1|1>>^n)[1, 2]):
    seq(a(n), n=0..35);  # Alois P. Heinz, Sep 06 2008
  • Mathematica
    Table[Binomial[Fibonacci[n] + 1, 2], {n, 0, 50}] (* Alonso del Arte, Jan 26 2012 *)
    LinearRecurrence[{3,1,-5,-1,1},{0,1,1,3,6},40] (* Harvey P. Dale, Apr 04 2020 *)
  • PARI
    a(n)=binomial(fibonacci(n)+1,2) \\ Charles R Greathouse IV, Jan 26 2012

Formula

G.f.: x(x^3-x^2-2x+1)/[(1+x)(1-3x+x^2)(1-x-x^2)].
a(n) = ((Fibonacci(n)+Fibonacci(n)^2)/2). - Gary Detlefs, Dec 24 2010
Equals A000217 o A000045. - M. F. Hasler, Jan 27 2012
a(n) = A032441(n) - 1. - Filip Zaludek, Oct 30 2016