cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

Original entry on oeis.org

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1

Views

Author

T. D. Noe, May 09 2005, Apr 28 2008

Keywords

Comments

Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    QuadPrimes2[1, 1, 2, 1000]
    (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
    max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
  • PARI
    list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016

Extensions

Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014

A020673 Numbers of form x^2 + 10 y^2.

Original entry on oeis.org

0, 1, 4, 9, 10, 11, 14, 16, 19, 25, 26, 35, 36, 40, 41, 44, 46, 49, 56, 59, 64, 65, 74, 76, 81, 89, 90, 91, 94, 99, 100, 104, 106, 110, 115, 121, 126, 131, 139, 140, 144, 154, 160, 161, 164, 169, 171, 176, 179, 184, 185, 190, 196, 206, 209, 211, 224, 225, 234, 235, 236, 241
Offset: 1

Keywords

Crossrefs

Primes: A033201.

A216579 Number of positive integer solutions to the equation a^2 + 10*b^2 = n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2
Offset: 1

Author

V. Raman, Sep 08 2012

Keywords

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Length@Select[ Range@Sqrt[ n/10], IntegerQ@Sqrt[ n - 10 #] &]]; (* Michael Somos, Jan 10 2015 *)
  • PARI
    a(n)=sum(b=1,sqrtint((n-1)\10),issquare(n-10*b^2)) \\ Charles R Greathouse IV, Nov 19 2014

A139829 Primes of the form 4x^2+4xy+11y^2.

Original entry on oeis.org

11, 19, 59, 131, 139, 179, 211, 251, 331, 379, 419, 491, 499, 571, 619, 659, 691, 739, 811, 859, 971, 1019, 1051, 1091, 1171, 1259, 1291, 1451, 1459, 1499, 1531, 1571, 1579, 1619, 1699, 1811, 1931, 1979, 2011, 2099, 2131, 2179, 2251, 2339, 2371
Offset: 1

Author

T. D. Noe, May 02 2008

Keywords

Comments

Discriminant=-160. See A139827 for more information.
Also, primes of form u^2+10v^2 with odd v, while A107145 has even v. One can transform its form as (2x+y)^2+10y^2 (where y can only be odd) and the latter is x^2+10(2y)^2. This sequence has primes {11,19} mod 20 while the second has {1,9} mod 20 and together they are the primes x^2+10y^2 (A033201) which are {1,9,11,20} mod 20. [From Tito Piezas III, Jan 01 2009]

Programs

  • Magma
    [ p: p in PrimesUpTo(3000) | p mod 40 in {11, 19}]; // Vincenzo Librandi, Jul 29 2012
  • Mathematica
    QuadPrimes2[4, -4, 11, 10000] (* see A106856 *)

Formula

The primes are congruent to {11, 19} (mod 40).

A216577 Number of nonnegative integer solutions to the equation x^2 + 10*y^2 = n.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 0

Author

V. Raman, Sep 08 2012

Keywords

Crossrefs

Extensions

Corrected by T. D. Noe and N. J. A. Sloane, Sep 10 2012

A317641 Expansion of theta_3(q)*theta_3(q^10), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 4, 0, 0, 4, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 2, 4, 0, 0, 4, 0, 4, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 2, 8, 0, 0, 4, 0, 0, 0, 0, 4, 2
Offset: 0

Author

Ilya Gutkovskiy, Aug 02 2018

Keywords

Comments

Number of integer solutions to the equation x^2 + 10*y^2 = n.

Examples

			G.f. = 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^10 + 4*q^11 + 4*q^14 + 2*q^16 + 4*q^19 + ...
		

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^10], {q, 0, nmax}], q]
    nmax = 100; CoefficientList[Series[QPochhammer[-q, -q] QPochhammer[-q^10, -q^10]/(QPochhammer[q, -q] QPochhammer[q^10, -q^10]), {q, 0, nmax}], q]

Formula

G.f.: Product_{k>=1} (1 + x^(2*k-1))^2*(1 - x^(2*k))*(1 + x^(20*k-10))^2*(1 - x^(20*k)).

A216578 Prime numbers which cannot be written in the form x^2 + 10*y^2.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 23, 29, 31, 37, 43, 47, 53, 61, 67, 71, 73, 79, 83, 97, 101, 103, 107, 109, 113, 127, 137, 149, 151, 157, 163, 167, 173, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 257, 263, 269, 271, 277, 283, 293, 307, 311, 313, 317, 337, 347
Offset: 1

Author

V. Raman, Sep 08 2012

Keywords

Comments

Prime numbers not congruent to {1, 9, 11, 19} mod 40.

Crossrefs

A216580 Numbers which can be written in the form x^2 + 10*y^2, where x > 0 and y > 0.

Original entry on oeis.org

11, 14, 19, 26, 35, 41, 44, 46, 49, 56, 59, 65, 74, 76, 89, 91, 94, 99, 104, 106, 110, 115, 121, 126, 131, 139, 140, 154, 161, 164, 169, 171, 176, 179, 184, 185, 190, 196, 206, 209, 211, 224, 234, 235, 236, 241, 251, 254, 259, 260, 265, 266, 275, 281, 286
Offset: 1

Author

V. Raman, Sep 08 2012

Keywords

Crossrefs

Showing 1-8 of 8 results.