A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.
2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1
A020673 Numbers of form x^2 + 10 y^2.
0, 1, 4, 9, 10, 11, 14, 16, 19, 25, 26, 35, 36, 40, 41, 44, 46, 49, 56, 59, 64, 65, 74, 76, 81, 89, 90, 91, 94, 99, 100, 104, 106, 110, 115, 121, 126, 131, 139, 140, 144, 154, 160, 161, 164, 169, 171, 176, 179, 184, 185, 190, 196, 206, 209, 211, 224, 225, 234, 235, 236, 241
Offset: 1
Links
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Primes: A033201.
A216579 Number of positive integer solutions to the equation a^2 + 10*b^2 = n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[ n_] := If[ n < 1, 0, Length@Select[ Range@Sqrt[ n/10], IntegerQ@Sqrt[ n - 10 #] &]]; (* Michael Somos, Jan 10 2015 *)
-
PARI
a(n)=sum(b=1,sqrtint((n-1)\10),issquare(n-10*b^2)) \\ Charles R Greathouse IV, Nov 19 2014
A139829 Primes of the form 4x^2+4xy+11y^2.
11, 19, 59, 131, 139, 179, 211, 251, 331, 379, 419, 491, 499, 571, 619, 659, 691, 739, 811, 859, 971, 1019, 1051, 1091, 1171, 1259, 1291, 1451, 1459, 1499, 1531, 1571, 1579, 1619, 1699, 1811, 1931, 1979, 2011, 2099, 2131, 2179, 2251, 2339, 2371
Offset: 1
Comments
Discriminant=-160. See A139827 for more information.
Also, primes of form u^2+10v^2 with odd v, while A107145 has even v. One can transform its form as (2x+y)^2+10y^2 (where y can only be odd) and the latter is x^2+10(2y)^2. This sequence has primes {11,19} mod 20 while the second has {1,9} mod 20 and together they are the primes x^2+10y^2 (A033201) which are {1,9,11,20} mod 20. [From Tito Piezas III, Jan 01 2009]
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Magma
[ p: p in PrimesUpTo(3000) | p mod 40 in {11, 19}]; // Vincenzo Librandi, Jul 29 2012
-
Mathematica
QuadPrimes2[4, -4, 11, 10000] (* see A106856 *)
Formula
The primes are congruent to {11, 19} (mod 40).
A216577 Number of nonnegative integer solutions to the equation x^2 + 10*y^2 = n.
1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 0
Keywords
Extensions
Corrected by T. D. Noe and N. J. A. Sloane, Sep 10 2012
A317641 Expansion of theta_3(q)*theta_3(q^10), where theta_3() is the Jacobi theta function.
1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 4, 0, 0, 4, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 2, 4, 0, 0, 4, 0, 4, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 2, 8, 0, 0, 4, 0, 0, 0, 0, 4, 2
Offset: 0
Keywords
Comments
Number of integer solutions to the equation x^2 + 10*y^2 = n.
Examples
G.f. = 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^10 + 4*q^11 + 4*q^14 + 2*q^16 + 4*q^19 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
Programs
-
Mathematica
nmax = 100; CoefficientList[Series[EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^10], {q, 0, nmax}], q] nmax = 100; CoefficientList[Series[QPochhammer[-q, -q] QPochhammer[-q^10, -q^10]/(QPochhammer[q, -q] QPochhammer[q^10, -q^10]), {q, 0, nmax}], q]
Formula
G.f.: Product_{k>=1} (1 + x^(2*k-1))^2*(1 - x^(2*k))*(1 + x^(20*k-10))^2*(1 - x^(20*k)).
A216578 Prime numbers which cannot be written in the form x^2 + 10*y^2.
2, 3, 5, 7, 13, 17, 23, 29, 31, 37, 43, 47, 53, 61, 67, 71, 73, 79, 83, 97, 101, 103, 107, 109, 113, 127, 137, 149, 151, 157, 163, 167, 173, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 257, 263, 269, 271, 277, 283, 293, 307, 311, 313, 317, 337, 347
Offset: 1
Keywords
Comments
Prime numbers not congruent to {1, 9, 11, 19} mod 40.
A216580 Numbers which can be written in the form x^2 + 10*y^2, where x > 0 and y > 0.
11, 14, 19, 26, 35, 41, 44, 46, 49, 56, 59, 65, 74, 76, 89, 91, 94, 99, 104, 106, 110, 115, 121, 126, 131, 139, 140, 154, 161, 164, 169, 171, 176, 179, 184, 185, 190, 196, 206, 209, 211, 224, 234, 235, 236, 241, 251, 254, 259, 260, 265, 266, 275, 281, 286
Offset: 1
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Extensions