cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A033201 Primes of the form x^2 + 10*y^2.

Original entry on oeis.org

11, 19, 41, 59, 89, 131, 139, 179, 211, 241, 251, 281, 331, 379, 401, 409, 419, 449, 491, 499, 521, 569, 571, 601, 619, 641, 659, 691, 739, 761, 769, 809, 811, 859, 881, 929, 971, 1009, 1019, 1049, 1051, 1091, 1129, 1171, 1201, 1249, 1259, 1289, 1291, 1321, 1361, 1409, 1451, 1459, 1481
Offset: 1

Views

Author

Keywords

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, p. 36.

Crossrefs

Cf. A139643.
Primes in A020673.

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | NormEquation(10,p) eq true]; // Bruno Berselli, Jul 03 2016
  • Mathematica
    Clear[f,lst,p,x,y]; f[x_,y_]:=x^2+10*y^2; lst={};Do[Do[p=f[x,y];If[PrimeQ[p]&&p<7212,AppendTo[lst,p]],{y,0,6!}],{x,0,6!}];Take[Union[lst],222] (* Vladimir Joseph Stephan Orlovsky, Aug 04 2009 *)
    QuadPrimes2[1, 0, 10, 10000] (* see A106856 *)
  • PARI
    select(n->vecsearch([1,9,11,19],n%40), primes(100)) \\ Charles R Greathouse IV, Nov 09 2012
    

Formula

Same as primes congruent to 1, 9, 11, or 19 mod 40. See, e.g., Cox, p. 36.
a(n) ~ 4n log n. - Charles R Greathouse IV, Nov 09 2012

A216579 Number of positive integer solutions to the equation a^2 + 10*b^2 = n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2
Offset: 1

Views

Author

V. Raman, Sep 08 2012

Keywords

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, Length@Select[ Range@Sqrt[ n/10], IntegerQ@Sqrt[ n - 10 #] &]]; (* Michael Somos, Jan 10 2015 *)
  • PARI
    a(n)=sum(b=1,sqrtint((n-1)\10),issquare(n-10*b^2)) \\ Charles R Greathouse IV, Nov 19 2014

A216577 Number of nonnegative integer solutions to the equation x^2 + 10*y^2 = n.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 0

Views

Author

V. Raman, Sep 08 2012

Keywords

Crossrefs

Extensions

Corrected by T. D. Noe and N. J. A. Sloane, Sep 10 2012

A301805 Number of ways to write 3*n^2 as x^2 + 10*y^2 + 2^z, where x, y and z are nonnegative integers with z > 3.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 3, 2, 4, 4, 4, 4, 4, 4, 6, 4, 4, 3, 5, 4, 4, 5, 7, 5, 4, 4, 6, 4, 7, 5, 5, 7, 7, 5, 5, 4, 8, 5, 7, 6, 11, 6, 6, 5, 8, 5, 6, 7, 5, 7, 6, 5, 5, 5, 7, 7, 4, 4, 8, 8, 8, 6, 6, 6, 9, 8, 8, 7, 8, 6, 10, 6, 10, 6, 8, 8, 8, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Mar 27 2018

Keywords

Comments

It might seem that a(n) > 0 for all n > 2. However, we find that a(323525083) = 0, moreover 3*323525083^2 cannot be written as x^2 + 10*y^2 + 2^z with x,y,z nonnegative integers. We note also that a(270035155) = 0 but 3*270035155^2 - 2^0 has the form x^2 + 10*y^2 with x and y integers.
My way to check whether 3*n^2 can be written as x^2 + 10*y^2 + 2^z is to find z such that 3*n^2 - 2^z can be written as x^2 + 10*y^2. I observe that a positive integer n has the form x^2 + 10*y^2 with x and y integers if and only if the p-adic order ord_p(n) of n is even for any prime p == 3, 17, 21, 27, 29, 31, 33, 39 (mod 40) and the sum of those ord_p(n) with p prime and p == 2, 5, 7, 13, 23, 37 (mod 40) is even.
From David A. Corneth, Mar 27 2018: (Start)
If a(n) > 0 then a(2*n) > 0; 3*n^2 = x^2 + 10*y^2 + 2^z <=> 3*(2*n)^2 = 4 * 3*n^2 = 4 * (x^2 + 10*y^2 + 2^z) = (2*x)^2 + 10 * (2*y)^2 + 2^(z + 2).
So we just need to check odd n and as z > 0, 2 | 2^z and furthermore 2 | 10 * y^2 so 3*x^2 must be odd, i.e., x must be odd for 3*n^2 to be odd. Also, y must be odd. For odd n, 3*n^2 == 3 (mod 4), for odd x, x^2 == (1 mod 4), for z >= 3, 2^z == 0 (mod 4) so 10 * y^2 must be == 2 (mod 4) which happens if and only if y is odd. (End)

Examples

			a(1) = a(2) = 0 since 3*1^2 < 3*2^2 < 2^4.
a(3) = 1 since 3*3^2 = 1^2 + 10*1^2 + 2^4.
a(4) = 1 since 3*4^2 = 4^2 + 10*0^2 + 2^5.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[3*n^2-2^k-10x^2],r=r+1],{k,4,Log[2,3n^2]},{x,0,(3*n^2-2^k)/10}];tab=Append[tab,r],{n,1,80}];Print[tab]

A317641 Expansion of theta_3(q)*theta_3(q^10), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 4, 0, 0, 4, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 2, 4, 0, 0, 4, 0, 4, 0, 0, 6, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 2, 8, 0, 0, 4, 0, 0, 0, 0, 4, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 02 2018

Keywords

Comments

Number of integer solutions to the equation x^2 + 10*y^2 = n.

Examples

			G.f. = 1 + 2*q + 2*q^4 + 2*q^9 + 2*q^10 + 4*q^11 + 4*q^14 + 2*q^16 + 4*q^19 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^10], {q, 0, nmax}], q]
    nmax = 100; CoefficientList[Series[QPochhammer[-q, -q] QPochhammer[-q^10, -q^10]/(QPochhammer[q, -q] QPochhammer[q^10, -q^10]), {q, 0, nmax}], q]

Formula

G.f.: Product_{k>=1} (1 + x^(2*k-1))^2*(1 - x^(2*k))*(1 + x^(20*k-10))^2*(1 - x^(20*k)).

A216578 Prime numbers which cannot be written in the form x^2 + 10*y^2.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 23, 29, 31, 37, 43, 47, 53, 61, 67, 71, 73, 79, 83, 97, 101, 103, 107, 109, 113, 127, 137, 149, 151, 157, 163, 167, 173, 181, 191, 193, 197, 199, 223, 227, 229, 233, 239, 257, 263, 269, 271, 277, 283, 293, 307, 311, 313, 317, 337, 347
Offset: 1

Views

Author

V. Raman, Sep 08 2012

Keywords

Comments

Prime numbers not congruent to {1, 9, 11, 19} mod 40.

Crossrefs

A216580 Numbers which can be written in the form x^2 + 10*y^2, where x > 0 and y > 0.

Original entry on oeis.org

11, 14, 19, 26, 35, 41, 44, 46, 49, 56, 59, 65, 74, 76, 89, 91, 94, 99, 104, 106, 110, 115, 121, 126, 131, 139, 140, 154, 161, 164, 169, 171, 176, 179, 184, 185, 190, 196, 206, 209, 211, 224, 234, 235, 236, 241, 251, 254, 259, 260, 265, 266, 275, 281, 286
Offset: 1

Views

Author

V. Raman, Sep 08 2012

Keywords

Crossrefs

Showing 1-7 of 7 results.