A033203 Primes p congruent to {1, 2, 3} (mod 8); or primes p of form x^2 + 2*y^2; or primes p such that x^2 = -2 has a solution mod p.
2, 3, 11, 17, 19, 41, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 137, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 313, 331, 337, 347, 353, 379, 401, 409, 419, 433, 443, 449, 457, 467, 491, 499, 521, 523, 547, 563, 569, 571, 577, 587, 593, 601, 617, 619, 641, 643, 659, 673, 683
Offset: 1
References
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Crossrefs
Programs
-
Haskell
a033203 n = a033203_list !! (n-1) a033203_list = filter ((== 1) . a010051) a047476_list -- Reinhard Zumkeller, Dec 29 2012, Jan 22 2012
-
Magma
[p: p in PrimesUpTo(600) | p mod 8 in [1..3]]; // Vincenzo Librandi, Aug 11 2012
-
Magma
[p: p in PrimesUpTo(800) | NormEquation(2,p) eq true]; // Bruno Berselli, Jul 03 2016
-
Mathematica
QuadPrimes2[1, 0, 2, 10000] (* see A106856 *) Select[Prime[Range[200]],MemberQ[{1,2,3},Mod[#,8]]&] (* Harvey P. Dale, Mar 16 2013 *)
-
PARI
is(n)=isprime(n) && issquare(Mod(-2,n)) \\ Charles R Greathouse IV, Nov 29 2016
Comments