cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A204189 Benoît Perichon's 26 primes in arithmetic progression.

Original entry on oeis.org

43142746595714191, 48425980631694091, 53709214667673991, 58992448703653891, 64275682739633791, 69558916775613691, 74842150811593591, 80125384847573491, 85408618883553391, 90691852919533291, 95975086955513191, 101258320991493091, 106541555027472991, 111824789063452891, 117108023099432791, 122391257135412691, 127674491171392591, 132957725207372491, 138240959243352391, 143524193279332291, 148807427315312191, 154090661351292091, 159373895387271991, 164657129423251891, 169940363459231791, 175223597495211691
Offset: 1

Views

Author

Jonathan Sondow, Jan 14 2012

Keywords

Comments

Longest known arithmetic progression of primes as of Jan 14, 2012.
Discovered on Apr 12 2010 by Benoît Perichon using software by Jaroslaw Wroblewski and Geoff Reynolds in a distributed PrimeGrid project.

References

  • R. K. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer-Verlag, 1994, A5 and A6.
  • P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, 1989, p. 224.

Crossrefs

Programs

  • Mathematica
    a[1] := 43142746595714191; a[n_] := a[n] = a[n - 1] + 5283234035979900; Table[a[n], {n, 26}] (* Alonso del Arte, Jan 14 2012 *)
    Range[ 43142746595714191, 175223597495211691, 5283234035979900] (* Michael Somos, Jan 15 2012 *)
  • PARI
    a(n)=5283234035979900*n+37859512559734291 \\ Charles R Greathouse IV, Jan 15 2012

Formula

a(n) = 43142746595714191 + 5283234035979900*(n-1) for n = 1, 2, ..., 26.
a(n) = 43142746595714191 + 23681770*23#*(n-1) for n = 1..26, where 23# = 2*3*5*7*11*13*17*19*23 = 223092870 = A002110(9).

A261140 a(n) = 3486107472997423 + (n-1)*371891575525470.

Original entry on oeis.org

3486107472997423, 3857999048522893, 4229890624048363, 4601782199573833, 4973673775099303, 5345565350624773, 5717456926150243, 6089348501675713, 6461240077201183, 6833131652726653, 7205023228252123, 7576914803777593, 7948806379303063, 8320697954828533
Offset: 1

Views

Author

Marco Ripà, Aug 10 2015

Keywords

Comments

The terms n = 1..26 are prime. This is the longest sequence of primes in arithmetic progression with smallest end, a(26)=12783396861134173, known as of August 10, 2015.

Examples

			a(26) = 3486107472997423 + 25*371891575525470 = 12783396861134173 is prime.
		

Crossrefs

Programs

  • Magma
    [3486107472997423+(n-1)*371891575525470: n in [1..20]];
    
  • Mathematica
    Table[3486107472997423 + (n - 1) 371891575525470, {n, 1, 20}]
    LinearRecurrence[{2,-1},{3486107472997423,3857999048522893},20] (* Harvey P. Dale, May 14 2022 *)
  • PARI
    Vec(-x*(3114215897471953*x-3486107472997423)/(x-1)^2 + O(x^40)) \\ Colin Barker, Aug 25 2015

Formula

a(n) = 3486107472997423 + (n-1)*1666981*A002110(9).
G.f.: -x*(3114215897471953*x-3486107472997423) / (x-1)^2. - Colin Barker, Aug 25 2015

A327760 Primes in Rob Gahan's arithmetic progression of 27 primes.

Original entry on oeis.org

224584605939537911, 242720302537486841, 260855999135435771, 278991695733384701, 297127392331333631, 315263088929282561, 333398785527231491, 351534482125180421, 369670178723129351, 387805875321078281, 405941571919027211, 424077268516976141, 442212965114925071
Offset: 1

Views

Author

Felix Fröhlich, Sep 25 2019

Keywords

Comments

This arithmetic progression of 27 primes (AP27) was discovered by Rob Gahan on 23 September 2019 as part of PrimeGrid's AP27 Search subproject (cf. Goetz, 2019).

Crossrefs

Programs

  • Mathematica
    A327760[n_] := 224584605939537911 + (n-1)*18135696597948930;
    Array[A327760, 27] (* Paolo Xausa, Jan 30 2024 *)
  • PARI
    vector(27, t, 224584605939537911+81292139*223092870*(t-1))

A363980 Tom Greer's arithmetic progression of 27 primes.

Original entry on oeis.org

277699295941594831, 315809464967513821, 353919633993432811, 392029803019351801, 430139972045270791, 468250141071189781, 506360310097108771, 544470479123027761, 582580648148946751, 620690817174865741, 658800986200784731, 696911155226703721, 735021324252622711
Offset: 1

Views

Author

Marco Ripà, Jun 30 2023

Keywords

Comments

At the time of submission (June 2023), this sequence is the arithmetic progression of 27 primes having the largest known initial and final term and it was found by Tom Greer on 26 May 2023 as part of PrimeGrid's AP27, running the program AP26 (this is the second known AP27 to date, see A327760).

Examples

			a(3) = 277699295941594831 + 2*170826477*223092870 is prime.
		

Crossrefs

Programs

  • Mathematica
    A363980[n_]:=277699295941594831 + (n-1)*38110169025918990;
    Array[A363980, 27] (* Paolo Xausa, Jan 30 2024 *)
  • PARI
    vector(27, t, 277699295941594831+170826477*223092870*(t-1))

Formula

a(n+1) = 277699295941594831 + n*170826477*223092870, for n = 0, 1, ..., 26.

A374949 Michael Kwok's arithmetic progression of 27 primes.

Original entry on oeis.org

605185576317848261, 639847242910261121, 674508909502673981, 709170576095086841, 743832242687499701, 778493909279912561, 813155575872325421, 847817242464738281, 882478909057151141, 917140575649564001, 951802242241976861, 986463908834389721, 1021125575426802581
Offset: 1

Views

Author

Marco Ripà, Jul 24 2024

Keywords

Comments

At the time of submission (July 2024), this sequence is the arithmetic progression of 27 primes having the largest known initial and final term and it was found by Michael Kwok on 10 December 2023 as part of the project PrimeGrid, running the program AP26 (this is the third known AP27 to date, see A327760 and A363980).

Examples

			a(3) = 605185576317848261 + 2*34661666592412860 is prime.
		

Crossrefs

Programs

  • Mathematica
    A374949[n_]:=605185576317848261 + (n-1)* 34661666592412860; Array[A374949, 27]
  • PARI
    vector(27, t, 605185576317848261+155368778*223092870*(t-1))

Formula

a(n+1) = 605185576317848261 + n*34661666592412860, for n = 0, 1, ..., 26.

A260939 Thirteen primes in arithmetic progression with difference 60060 and minimal initial term.

Original entry on oeis.org

4943, 65003, 125063, 185123, 245183, 305243, 365303, 425363, 485423, 545483, 605543, 665603, 725663
Offset: 1

Views

Author

Marco Ripà, Aug 05 2015

Keywords

Comments

This sequence is 13 primes long and was discovered by W. N. Seredinsky.

Examples

			a(4) = 4943 + 3*60060 = 185123.
		

Crossrefs

Programs

Formula

a(n) = 4943 + (n-1)*60060 = 4943 + (n-1)*2*A002110(6).

A293791 Prime 5-tuple 10000024493 + K * 30 for K = 0 to 4.

Original entry on oeis.org

10000024493, 10000024523, 10000024553, 10000024583, 10000024613
Offset: 1

Views

Author

Frank Ellermann, Oct 16 2017

Keywords

Comments

A052243(20) = 9843019 and A052243(21) = 9843049 are the first two primes in the smallest 5-tuple with difference 30 reported by Lander and Parkin in 1967. The much larger 5-tuple beginning with 10000024493 was reported by Jones, Lal and Blundon in the same year.
Sequence A059044 lists the quintuplets of consecutive primes in arithmetic progression (CPAP-5). A059044(9) ~ 10^8, A059044(86) ~ 10^9. a(1) ~ 10^10 might occur in that sequence around index n = 1000. - M. F. Hasler, Oct 28 2018

References

  • Yan S.Y. (2009) Number-Theoretic Preliminaries. In: Primality Testing and Integer Factorization in Public-Key Cryptography. Advances in Information Security, vol 11. Springer, Boston, MA.

Crossrefs

Showing 1-7 of 7 results.