A033312 a(n) = n! - 1.
0, 0, 1, 5, 23, 119, 719, 5039, 40319, 362879, 3628799, 39916799, 479001599, 6227020799, 87178291199, 1307674367999, 20922789887999, 355687428095999, 6402373705727999, 121645100408831999, 2432902008176639999, 51090942171709439999, 1124000727777607679999
Offset: 0
Examples
G.f. = x^2 + 5*x^3 + 23*x^4 + 119*x^5 + 719*x^6 + 5039*x^7 + 40319*x^8 + ...
References
- Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 181, p. 92.
- Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 6, 1969, p. 3, 1993.
- Problem 598, J. Rec. Math., 11 (1978), 68-69.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
- The IMO Compendium, Problem 6, 1st Canadian Mathematical Olympiad 1969.
- Stéphane Legendre and Philippe Paclet, On the Permutations Generated by Cyclic Shift , J. Int. Seq. 14 (2011) # 11.3.2.
- Gerard P. Michon, Wilson's Theorem.
- Hisanori Mishima, Factorizations of many number sequences.
- Hisanori Mishima, Factorizations of many number sequences.
- Michael Penn, Make it look like a simple calculus problem., YouTube video, 2021.
- Andrew Walker, Factors of n! +- 1.
- Eric Weisstein's World of Mathematics, Factorial.
- Eric Weisstein's World of Mathematics, Permutation Pattern.
- Index entries for sequences related to factorial base representation.
- Index entries for sequences related to factorial numbers.
- Index to sequences related to Olympiads.
Crossrefs
Programs
-
Magma
[Factorial(n)-1: n in [0..25]]; // Vincenzo Librandi, Jul 20 2011
-
Mathematica
FoldList[#1*#2 + #2 - 1 &, 0, Range[19]] (* Robert G. Wilson v, Jul 07 2012 *) Range[0, 19]! - 1 (* Alonso del Arte, Jan 24 2013 *)
-
Maxima
A033312(n):= n!-1$ makelist(A033312(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
-
PARI
a(n)=n!-1 \\ Charles R Greathouse IV, Jul 19 2011
Formula
a(n) = Sum_{k = 1 .. n} (k-1)*(k-1)!.
a(n) = a(n - 1)*(n - 1) + a(n - 1) + n - 1, a(0) = 0. - Reinhard Zumkeller, Feb 03 2003
a(0) = a(1) = 0, a(n) = a(n - 1) * n + (n - 1) for n >= 2. - Jaroslav Krizek, Jan 23 2010
E.g.f.: 1/(1 - x) - exp(x). - Sergei N. Gladkovskii, Jun 29 2012
0 = 1 + a(n)*(+a(n+1) - a(n+2)) + a(n+1)*(+3 + a(n+1)) + a(n+2)*(-1) for n>=0. - Michael Somos, Feb 24 2017
Sum_{n>=2} 1/a(n) = A331373. - Amiram Eldar, Nov 11 2020
Comments