A033321 Binomial transform of Fine's sequence A000957: 1, 0, 1, 2, 6, 18, 57, 186, ...
1, 1, 2, 6, 21, 79, 311, 1265, 5275, 22431, 96900, 424068, 1876143, 8377299, 37704042, 170870106, 779058843, 3571051579, 16447100702, 76073821946, 353224531663, 1645807790529, 7692793487307, 36061795278341, 169498231169821
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0 to 200 by T. D. Noe)
- M. Albert, R. Aldred, M. Atkinson, C Handley, D. Holton, D. McCaughan, and H. van Ditmarsch, Sorting Classes, Elec. J. of Comb. 12 (2005) R31.
- Andrei Asinowski and Cyril Banderier, From geometry to generating functions: rectangulations and permutations, arXiv:2401.05558 [cs.DM], 2024. See page 2.
- Jean-Luc Baril, José L. Ramírez, and Lina M. Simbaqueba, Counting prefixes of skew Dyck paths, J. Int. Seq., Vol. 24 (2021), Article 21.8.2.
- Paul Barry, Series reversion with Jacobi and Thron continued fractions, arXiv:2107.14278 [math.NT], 2021.
- Christian Bean, Finding structure in permutation sets, Ph.D. Dissertation, Reykjavík University, School of Computer Science, 2018.
- Christian Bean, Émile Nadeau, and Henning Ulfarsson, Enumeration of Permutation Classes and Weighted Labelled Independent Sets, arXiv:1912.07503 [math.CO], 2019.
- David Bevan, The permutation class Av(4213,2143), arXiv:1510.06328 [math.CO], 2014.
- Jonathan Bloom and Alex Burstein, Egge triples and unbalanced Wilf-equivalence, arXiv:1410.0230 [math.CO], 2014.
- Miklos Bona, Long increasing subsequences and non-algebraicity, arXiv:2310.13649 [math.CO], 2023.
- Robert Brignall, Sophie Huczynska, and Vincent Vatter, Simple permutations and algebraic generating functions, arXiv:math/0608391 [math.CO], 2006.
- Robert Brignall and Jakub Sliacan, Juxtaposing Catalan permutation classes with monotone ones, arXiv:1611.05370 [math.CO], 2016.
- Colin Defant and Kai Zheng, Stack-Sorting with Consecutive-Pattern-Avoiding Stacks, arXiv:2008.12297 [math.CO], 2020.
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Emeric Deutsch, Emanuele Munarini, and Simone Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
- Rigoberto Flórez, Leandro Junes, Luisa M. Montoya, and José L. Ramírez, Counting Subwords in Non-Decreasing Dyck Paths, J. Int. Seq. (2025) Vol. 28, Art. No. 25.1.6. See p. 19.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
- John W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Toufik Mansour and Mark Shattuck, Nine classes of permutations enumerated by binomial transform of Fine's sequence, Discrete Applied Mathematics, Vol. 226, 31 July 2017, p. 94-105.
- Megan A. Martinez and Carla D. Savage, Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations, arXiv:1609.08106 [math.CO], 2016.
- Arturo Merino and Torsten Mütze, Combinatorial generation via permutation languages. III. Rectangulations, arXiv:2103.09333 [math.CO], 2021.
- Sam Miner, Enumeration of several two-by-four classes, arXiv preprint arXiv:1610.01908 [math.CO], 2016.
- N. J. A. Sloane, Transforms
- Rebecca Smith and Vincent Vatter, A stack and a pop stack in series, arXiv:1303.1395 [math.CO], 2013.
- Index entries for reversions of series
Programs
-
Maple
a[0] := 1: a[1] := 1: a[2] := 2: for n from 3 to 23 do a[n] := ((13*n-5)*a[n-1]-(16*n-23)*a[n-2]+5*(n-2)*a[n-3])/2/(n+1) od;
-
Mathematica
f[n_] := Sum[Binomial[n, k]*g[n - k], {k, 0, n}]; g[n_] := Sum[(-1)^(m + n)(n + m)!/n!/m!(n - m + 1)/(n + 1), {m, 0, n}]; Table[ f[n], {n, 24}] (* Robert G. Wilson v, Nov 04 2005 *)
-
Maxima
a(n):=sum(sum(binomial(n-m-1,k-1)*m/(k+m)*binomial(2*k+m-1,k+m-1),k,1,n-m),m,1,n-1)+1; /* Vladimir Kruchinin, May 12 2011 */
-
PARI
a(n)=1+sum(m=1,n-1,sum(k=1,n-m,binomial(n-m-1,k-1)/(k+m)* binomial(2*k+m-1,k+m-1)*m)) \\ Charles R Greathouse IV, Mar 06 2013
-
PARI
x='x+O('x^50); Vec(2/(1+x+sqrt(1-6*x+5*x^2))) \\ Altug Alkan, Oct 22 2015
Formula
Also REVERT transform of x*(2*x-1)/(x^2+x-1). - Olivier Gérard
G.f.: 2/(1 + x + sqrt(1 - 6*x + 5*x^2)).
D-finite with recurrence a(n) = ((13*n-5)*a(n-1) - (16*n-23)*a(n-2) + 5*(n-2)*a(n-3))/(2*(n+1)) (n>=3); a(0)=a(1)=1, a(2)=2. - Emeric Deutsch, Mar 21 2004
Binomial transform of Fine's sequence: a(n) = Sum_{k=0..n} binomial(n, k)*A000957(n-k).
G.f.: 1/(1-x-x^2/(1-3x-x^2/(1-3x-x^2/(1-3x-x^2/(1-... (continued fraction). - Paul Barry, Jun 15 2009
a(n) = Sum_{k=0..n} A091965(n,k)*(-2)^k. - Philippe Deléham, Nov 28 2009
a(n) = 1 + Sum_{m=1..n-1} Sum_{k=1..n-m} binomial(n-m-1, k-1)*(m/(k+m))*binomial(2*k+m-1, k+m-1). - Vladimir Kruchinin, May 12 2011
a(n) = upper left term in M^n, M = the production matrix:
1, 1, 0, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, 0, ...
1, 2, 1, 1, 0, 0, 0, ...
1, 2, 1, 2, 1, 0, 0, ...
1, 2, 1, 2, 1, 1, 0, ...
1, 2, 1, 2, 1, 2, 1, ...
...
- Gary W. Adamson, Jul 08 2011
a(n) ~ 5^(n+3/2)/(18*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Aug 09 2013
G.f.: 1/(1-x*C(x/(1-x))), where C(x) = g.f. for A000108(n). - Alexander Burstein, Oct 05 2014
Extensions
More terms from Robert G. Wilson v, Nov 04 2005
Entry revised by N. J. A. Sloane, Aug 07 2006
Comments