A033431 a(n) = 2*n^3.
0, 2, 16, 54, 128, 250, 432, 686, 1024, 1458, 2000, 2662, 3456, 4394, 5488, 6750, 8192, 9826, 11664, 13718, 16000, 18522, 21296, 24334, 27648, 31250, 35152, 39366, 43904, 48778, 54000, 59582, 65536, 71874, 78608, 85750, 93312, 101306, 109744, 118638, 128000, 137842
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Amelia Carolina Sparavigna, Generalized Sum of Stella Octangula Numbers, Politecnico di Torino (Italy, 2021).
- Amelia Carolina Sparavigna, Cardano Formula and Some Figurate Numbers, Politecnico di Torino (Italy, 2021).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[2*n^3: n in [0..30]]; // Vincenzo Librandi, Jun 26 2011
-
Maple
seq(2*n^3, n=0..39); # Nathaniel Johnston, Jun 26 2011
-
Mathematica
2 Range[0, 50]^3 (* Wesley Ivan Hurt, Aug 25 2014 *)
-
PARI
a(n)=2*n^3 \\ Charles R Greathouse IV, Sep 24 2015
Formula
G.f.: 2*x*(1 + 4*x + x^2) / (1 - x)^4. - R. J. Mathar, Feb 04 2011
a(n) = 2*A000578(n). - Omar E. Pol, May 14 2008
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Aug 25 2014
E.g.f.: 2*x*(1 + 3*x + x^2)*exp(x). - G. C. Greubel, Jul 15 2017
From Amiram Eldar, Jan 10 2023: (Start)
Sum_{n>=1} 1/a(n) = zeta(3)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*zeta(3)/8. (End)
Comments