A033437 Number of edges in 5-partite Turán graph of order n.
0, 0, 1, 3, 6, 10, 14, 19, 25, 32, 40, 48, 57, 67, 78, 90, 102, 115, 129, 144, 160, 176, 193, 211, 230, 250, 270, 291, 313, 336, 360, 384, 409, 435, 462, 490, 518, 547, 577, 608, 640, 672, 705, 739, 774, 810, 846, 883, 921, 960, 1000, 1040, 1081, 1123, 1166, 1210, 1254
Offset: 0
References
- R. L. Graham et al., eds., Handbook of Combinatorics, Vol. 2, p. 1234.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Kevin Beanland, Hung Viet Chu, and Carrie E. Finch-Smith, Generalized Schreier sets, linear recurrence relation, Turán graphs, arXiv:2112.14905 [math.CO], 2021.
- K. E. Stange, Integral points on elliptic curves and explicit valuations of division polynomials arXiv:1108.3051 [math.NT], 2011-2014.
- Eric Weisstein's World of Mathematics, Turán Graph
- Wikipedia, Turán graph
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,1,-2,1).
Crossrefs
Programs
-
Magma
[2*n^2 div 5: n in [0..60]]; // Vincenzo Librandi, Apr 20 2015
-
Mathematica
Table[Floor[2n^2/5],{n,0,60}]
-
PARI
a(n)=2*n^2\5 \\ Charles R Greathouse IV, Apr 20 2015
Formula
G.f.: (x^5+x^4+x^3+x^2)/((1-x^5)*(1-x)^2).
a(n) = Sum_{k=0..n} A011558(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009
a(n) = floor( 2n^2/5 ). - Wesley Ivan Hurt, Jun 20 2013
a(n) = Sum_{i=1..n} floor(4*i/5). - Wesley Ivan Hurt, Sep 12 2017
Comments