cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033439 Number of edges in 7-partite Turán graph of order n.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 27, 34, 42, 51, 61, 72, 84, 96, 109, 123, 138, 154, 171, 189, 207, 226, 246, 267, 289, 312, 336, 360, 385, 411, 438, 466, 495, 525, 555, 586, 618, 651, 685, 720, 756, 792, 829, 867, 906, 946, 987, 1029, 1071, 1114, 1158, 1203, 1249
Offset: 0

Views

Author

Keywords

Comments

Apart from the initial term this is the elliptic troublemaker sequence R_n(1,7) (also sequence R_n(6,7)) in the notation of Stange (see Table 1, p.16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - Peter Bala, Aug 12 2013

References

  • Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.

Crossrefs

Elliptic troublemaker sequences: A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A184535 (= R_n(2,5) = R_n(3,5)).

Programs

  • Magma
    [Floor(3*n^2/7): n in [0..60]]; // Vincenzo Librandi, Oct 19 2013
  • Mathematica
    CoefficientList[Series[- x^2 (x + 1) (x^2 - x + 1) (x^2 + x + 1)/((x - 1)^3 (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 19 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,1,-2,1},{0,0,1,3,6,10,15,21,27},60] (* Harvey P. Dale, Mar 19 2015 *)

Formula

a(n) = Sum_{k=0..n} A109720(k)*(n-k). [Reinhard Zumkeller, Nov 30 2009]
G.f.: -x^2*(x+1)*(x^2-x+1)*(x^2+x+1)/((x-1)^3*(x^6+x^5+x^4+x^3+x^2+x+1)). [Colin Barker, Aug 09 2012]
a(n) = floor(3*n^2/7). - Peter Bala, Aug 12 2013
a(0)=0, a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(5)=10, a(6)=15, a(7)=21, a(8)=27, a(n)=2*a(n-1)-a(n-2)+a(n-7)-2*a(n-8)+a(n-9). - Harvey P. Dale, Mar 19 2015
a(n) = Sum_{i=1..n} floor(6*i/7). - Wesley Ivan Hurt, Sep 12 2017

Extensions

More terms from Vincenzo Librandi, Oct 19 2013