A033439 Number of edges in 7-partite Turán graph of order n.
0, 0, 1, 3, 6, 10, 15, 21, 27, 34, 42, 51, 61, 72, 84, 96, 109, 123, 138, 154, 171, 189, 207, 226, 246, 267, 289, 312, 336, 360, 385, 411, 438, 466, 495, 525, 555, 586, 618, 651, 685, 720, 756, 792, 829, 867, 906, 946, 987, 1029, 1071, 1114, 1158, 1203, 1249
Offset: 0
References
- Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- K. E. Stange, Integral points on elliptic curves and explicit valuations of division polynomials, arXiv:1108.3051 [math.NT], 2011-2014.
- Eric Weisstein's World of Mathematics, Turán Graph [_Reinhard Zumkeller_, Nov 30 2009]
- Wikipedia, Turán graph [_Reinhard Zumkeller_, Nov 30 2009]
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,1,-2,1).
Crossrefs
Programs
-
Magma
[Floor(3*n^2/7): n in [0..60]]; // Vincenzo Librandi, Oct 19 2013
-
Mathematica
CoefficientList[Series[- x^2 (x + 1) (x^2 - x + 1) (x^2 + x + 1)/((x - 1)^3 (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 19 2013 *) LinearRecurrence[{2,-1,0,0,0,0,1,-2,1},{0,0,1,3,6,10,15,21,27},60] (* Harvey P. Dale, Mar 19 2015 *)
Formula
a(n) = Sum_{k=0..n} A109720(k)*(n-k). [Reinhard Zumkeller, Nov 30 2009]
G.f.: -x^2*(x+1)*(x^2-x+1)*(x^2+x+1)/((x-1)^3*(x^6+x^5+x^4+x^3+x^2+x+1)). [Colin Barker, Aug 09 2012]
a(n) = floor(3*n^2/7). - Peter Bala, Aug 12 2013
a(0)=0, a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(5)=10, a(6)=15, a(7)=21, a(8)=27, a(n)=2*a(n-1)-a(n-2)+a(n-7)-2*a(n-8)+a(n-9). - Harvey P. Dale, Mar 19 2015
a(n) = Sum_{i=1..n} floor(6*i/7). - Wesley Ivan Hurt, Sep 12 2017
Extensions
More terms from Vincenzo Librandi, Oct 19 2013
Comments