cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033440 Number of edges in 8-partite Turán graph of order n.

Original entry on oeis.org

0, 0, 1, 3, 6, 10, 15, 21, 28, 35, 43, 52, 62, 73, 85, 98, 112, 126, 141, 157, 174, 192, 211, 231, 252, 273, 295, 318, 342, 367, 393, 420, 448, 476, 505, 535, 566, 598, 631, 665, 700, 735, 771, 808, 846, 885, 925
Offset: 0

Views

Author

Keywords

References

  • Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- x^2 (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)/((x - 1)^3 (x + 1) (x^2 + 1) (x^4 + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 19 2013 *)
    LinearRecurrence[{2,-1,0,0,0,0,0,1,-2,1},{0,0,1,3,6,10,15,21,28,35},50] (* Harvey P. Dale, Mar 23 2015 *)

Formula

a(n) = round( (7/16)*n(n-2) ) +0 or -1 depending on n: if there is k such 8k+4<=n<=8k+6 then a(n) = floor( (7/16)*n*(n-2)) otherwise a(n) = round( (7/16)*n(n-2)). E.g. because 8*2+4<=21<=8*2+6 a(n) = floor((7/16)*21*19) = floor(174, 5625)=174. - Benoit Cloitre, Jan 17 2002
a(n) = Sum_{k=0..n} A168181(k)*(n-k). [Reinhard Zumkeller, Nov 30 2009]
G.f.: -x^2*(x^6+x^5+x^4+x^3+x^2+x+1)/((x-1)^3*(x+1)*(x^2+1)*(x^4+1)). [Colin Barker, Aug 09 2012]
a(n) = Sum_{i=1..n} floor(7*i/8). - Wesley Ivan Hurt, Sep 12 2017