A033485 a(n) = a(n-1) + a(floor(n/2)), a(1) = 1.
1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 83, 101, 119, 142, 165, 195, 225, 262, 299, 346, 393, 450, 507, 577, 647, 730, 813, 914, 1015, 1134, 1253, 1395, 1537, 1702, 1867, 2062, 2257, 2482, 2707, 2969, 3231, 3530, 3829, 4175, 4521, 4914, 5307, 5757
Offset: 1
References
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
- J. Arkin, Problem H-102: Gone but not forgotten, Fibonacci Quarterly, Vol. 9 (1971), page 135.
- Christine Bessenrodt, Jorn B. Olsson, and James A. Sellers, Unique path partitions: Characterization and Congruences, arXiv:1107.1156 [math.CO], 2011-2012.
- Philippe Deléham, Letter to N. J. A. Sloane, Apr 20 1998
- William Gasarch, What is known about that sequence, Computational Complexity blog, Jul 20 2022.
- Wouter van Doorn, On the congruence properties and growth rate of a recursively defined sequence, arXiv:2406.09532 [math.NT], 2024.
Crossrefs
Programs
-
Haskell
import Data.List (transpose) a033485 n = a033485_list !! (n-1) a033485_list = 1 : zipWith (+) a033485_list (concat $ transpose [a033485_list, a033485_list]) -- Reinhard Zumkeller, Nov 15 2012
-
Magma
[n le 1 select 1 else Self(n-1) + Self(Floor(n/2)) : n in [1..60]]; // Vincenzo Librandi, Nov 20 2015
-
Maple
a:= proc(n) option remember; `if`(n<2, n, a(n-1)+a(iquo(n, 2))) end: seq(a(n), n=1..60); # Alois P. Heinz, Dec 16 2019
-
Mathematica
b[1]=1; b[n_] := b[n]=Sum[b[k], {k, 1, n/2}]; Table[b[n], {n, 3, 105, 2}] (* Robert G. Wilson v, Apr 22 2001 *)
-
PARI
a(n)=if(n<2,1,a(floor(n/2))+a(n-1))
-
Python
from itertools import islice from collections import deque def A033485_gen(): # generator of terms aqueue, f, b, a = deque([2]), True, 1, 2 yield from (1, 2) while True: a += b yield a aqueue.append(a) if f: b = aqueue.popleft() f = not f A033485_list = list(islice(A033485_gen(),40)) # Chai Wah Wu, Jun 07 2022
Formula
a(n) = A000123(n)/2, for n >= 1.
Conjecture: lim_{n->oo} a(2n)/a(n)*log(n)/n = c = 1.64.... and a(n)/A(n) is bounded where A(n)=1 if n is a power of 2, otherwise A(n) = sqrt(n)*Product_{kBenoit Cloitre, Jan 26 2003
G.f.: A(x) satisfies x + (1+x)*A(x^2) = (1-x)*A(x). a(n) modulo 2 = A035263(n). - Philippe Deléham, Feb 25 2004
G.f.: (1/2)*(((1-x)*Product_{n>=0} (1-x^(2^n)))^(-1)-1). a(n) modulo 4 = A007413(n). - Philippe Deléham, Feb 28 2004
Sum_{k=1..n} a(k) = (a(2n+1)-1)/2 = A178855(n). - Philippe Deléham, Mar 18 2004
a(2n-1) = A131205(n). - Jean-Paul Allouche, Aug 11 2021
There exists a function f(n) such that n^f(n) < a(n) < n^(f(n) + epsilon) for all epsilon > 0 and all large enough n. - Wouter van Doorn, Sep 17 2024
Comments