cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033485 a(n) = a(n-1) + a(floor(n/2)), a(1) = 1.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 37, 47, 57, 70, 83, 101, 119, 142, 165, 195, 225, 262, 299, 346, 393, 450, 507, 577, 647, 730, 813, 914, 1015, 1134, 1253, 1395, 1537, 1702, 1867, 2062, 2257, 2482, 2707, 2969, 3231, 3530, 3829, 4175, 4521, 4914, 5307, 5757
Offset: 1

Views

Author

N. J. A. Sloane. This was in the 1973 "Handbook", but was then dropped from the database. Resubmitted by Philippe Deléham. Entry revised by N. J. A. Sloane, Jun 10 2012

Keywords

Comments

Sequence gives the number of partitions of 2n into "strongly decreasing" parts (see the function s*(n) in the paper by Bessenrodt, Olsson, and Sellers); see the example in A040039.
a(A036554(n)) is even, a(A003159(n)) is odd. - Benoit Cloitre, Oct 23 2002
Partial sums of the sequence a(1)=1, a(1), a(1), a(2), a(2), a(3), a(3), a(4), a(4), a(5), a(5), a(6), ...; example: a(1) = 1, a(2) = 1+1 = 2, a(3) = 1+1+1 = 3, a(4) = 1+1+1+2 = 5, a(5) = 1+1+1+2+2 = 7, ... - Philippe Deléham, Jan 02 2004
The number of odd numbers before the n-th even number in this sequence is A003156(n). - Philippe Deléham, Mar 27 2004
There are no terms divisible by 4 and there are infinitely many terms divisible by {2,3,5,6,7,9,10,11,13,14,15} (see van Doorn link). - Ivan N. Ianakiev, Aug 06 2022 and Wouter van Doorn, Sep 17 2024
a(n) = A001401(n), for 1..14. A001401(15) = 84. - Wolfdieter Lang, Jan 09 2023

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

Crossrefs

Cf. A040039 (first differences), A178855 (partial sums).
Also half of A000123 (with first term omitted).
Cf. A022907.

Programs

  • Haskell
    import Data.List (transpose)
    a033485 n = a033485_list !! (n-1)
    a033485_list = 1 : zipWith (+)
       a033485_list (concat $ transpose [a033485_list, a033485_list])
    -- Reinhard Zumkeller, Nov 15 2012
    
  • Magma
    [n le 1 select 1 else Self(n-1) + Self(Floor(n/2)) : n in [1..60]]; // Vincenzo Librandi, Nov 20 2015
    
  • Maple
    a:= proc(n) option remember;
          `if`(n<2, n, a(n-1)+a(iquo(n, 2)))
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Dec 16 2019
  • Mathematica
    b[1]=1; b[n_] := b[n]=Sum[b[k], {k, 1, n/2}]; Table[b[n], {n, 3, 105, 2}] (* Robert G. Wilson v, Apr 22 2001 *)
  • PARI
    a(n)=if(n<2,1,a(floor(n/2))+a(n-1))
    
  • Python
    from itertools import islice
    from collections import deque
    def A033485_gen(): # generator of terms
        aqueue, f, b, a = deque([2]), True, 1, 2
        yield from (1, 2)
        while True:
            a += b
            yield a
            aqueue.append(a)
            if f: b = aqueue.popleft()
            f = not f
    A033485_list = list(islice(A033485_gen(),40)) # Chai Wah Wu, Jun 07 2022

Formula

a(n) = A000123(n)/2, for n >= 1.
Conjecture: lim_{n->oo} a(2n)/a(n)*log(n)/n = c = 1.64.... and a(n)/A(n) is bounded where A(n)=1 if n is a power of 2, otherwise A(n) = sqrt(n)*Product_{kBenoit Cloitre, Jan 26 2003
G.f.: A(x) satisfies x + (1+x)*A(x^2) = (1-x)*A(x). a(n) modulo 2 = A035263(n). - Philippe Deléham, Feb 25 2004
G.f.: (1/2)*(((1-x)*Product_{n>=0} (1-x^(2^n)))^(-1)-1). a(n) modulo 4 = A007413(n). - Philippe Deléham, Feb 28 2004
Sum_{k=1..n} a(k) = (a(2n+1)-1)/2 = A178855(n). - Philippe Deléham, Mar 18 2004
a(2n-1) = A131205(n). - Jean-Paul Allouche, Aug 11 2021
There exists a function f(n) such that n^f(n) < a(n) < n^(f(n) + epsilon) for all epsilon > 0 and all large enough n. - Wouter van Doorn, Sep 17 2024