cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033536 Cubes of Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 8, 125, 2744, 74088, 2299968, 78953589, 2924207000, 114933031928, 4738245926336, 203152294091656, 9000469593857728, 410006814589000000, 19129277941464384000, 911218671317138401125, 44202915427981062663000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 10 1999

Keywords

Comments

Also the number of maximum independent vertex sets in the 3(n-1)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Dec 31 2017

Crossrefs

Programs

  • GAP
    List([0..20], n-> (Binomial(2*n, n)/(n+1))^3); # G. C. Greubel, Oct 14 2019
  • Magma
    [Catalan(n)^3: n in [0..20]]; // Vincenzo Librandi, Nov 13 2012
    
  • Maple
    seq((binomial(2*n, n)/(n+1))^3, n = 0..20); # G. C. Greubel, Oct 14 2019
  • Mathematica
    Table[CatalanNumber@n^3, {n, 0, 20}] (* Vincenzo Librandi, Nov 13 2012 *)
    CatalanNumber[Range[0, 20]]^3 (* Eric W. Weisstein, Dec 31 2017 *)
  • MuPAD
    combinat::dyckWords::count(n)^3 $ n = 0..16; // Zerinvary Lajos, Feb 15 2007
    
  • PARI
    a(n) = (binomial(2*n, n)/(n+1))^3; \\ Altug Alkan, Dec 31 2017
    
  • Sage
    [catalan_number(i)^3 for i in range(0,17)] # Zerinvary Lajos, May 17 2009
    
  • Sage
    [catalan_number(n)^3 for n in (0..20)] # G. C. Greubel, Oct 14 2019
    

Formula

From Ilya Gutkovskiy, Jan 23 2017: (Start)
O.g.f.: (1 - 3F2(-1/2,-1/2,-1/2; 1,1; 64*x))/(8*x).
E.g.f.: 3F3(1/2,1/2,1/2; 2,2,2; 64*x).
a(n) ~ 64^n/(Pi^(3/2)*n^(9/2)). (End)
From Amiram Eldar, Mar 27 2022: (Start)
a(n) = A000108(n)^3.
Sum_{n>=0} a(n)/64^n = 8 - 16*Gamma(3/4)*Gamma(7/4)/(Pi*Gamma(5/4)^2). (End)