A033536 Cubes of Catalan numbers (A000108).
1, 1, 8, 125, 2744, 74088, 2299968, 78953589, 2924207000, 114933031928, 4738245926336, 203152294091656, 9000469593857728, 410006814589000000, 19129277941464384000, 911218671317138401125, 44202915427981062663000
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Eric Weisstein's World of Mathematics, Catalan Number.
- Eric Weisstein's World of Mathematics, Maximum Independent Vertex Set.
Programs
-
GAP
List([0..20], n-> (Binomial(2*n, n)/(n+1))^3); # G. C. Greubel, Oct 14 2019
-
Magma
[Catalan(n)^3: n in [0..20]]; // Vincenzo Librandi, Nov 13 2012
-
Maple
seq((binomial(2*n, n)/(n+1))^3, n = 0..20); # G. C. Greubel, Oct 14 2019
-
Mathematica
Table[CatalanNumber@n^3, {n, 0, 20}] (* Vincenzo Librandi, Nov 13 2012 *) CatalanNumber[Range[0, 20]]^3 (* Eric W. Weisstein, Dec 31 2017 *)
-
MuPAD
combinat::dyckWords::count(n)^3 $ n = 0..16; // Zerinvary Lajos, Feb 15 2007
-
PARI
a(n) = (binomial(2*n, n)/(n+1))^3; \\ Altug Alkan, Dec 31 2017
-
Sage
[catalan_number(i)^3 for i in range(0,17)] # Zerinvary Lajos, May 17 2009
-
Sage
[catalan_number(n)^3 for n in (0..20)] # G. C. Greubel, Oct 14 2019
Formula
From Ilya Gutkovskiy, Jan 23 2017: (Start)
O.g.f.: (1 - 3F2(-1/2,-1/2,-1/2; 1,1; 64*x))/(8*x).
E.g.f.: 3F3(1/2,1/2,1/2; 2,2,2; 64*x).
a(n) ~ 64^n/(Pi^(3/2)*n^(9/2)). (End)
From Amiram Eldar, Mar 27 2022: (Start)
a(n) = A000108(n)^3.
Sum_{n>=0} a(n)/64^n = 8 - 16*Gamma(3/4)*Gamma(7/4)/(Pi*Gamma(5/4)^2). (End)
Comments