A033567 a(n) = (2*n-1)*(4*n-1).
1, 3, 21, 55, 105, 171, 253, 351, 465, 595, 741, 903, 1081, 1275, 1485, 1711, 1953, 2211, 2485, 2775, 3081, 3403, 3741, 4095, 4465, 4851, 5253, 5671, 6105, 6555, 7021, 7503, 8001, 8515, 9045, 9591, 10153, 10731, 11325, 11935, 12561, 13203, 13861, 14535, 15225
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[(2*n-1)*(4*n-1): n in [0..50]]; // G. C. Greubel, Sep 19 2018
-
Mathematica
Table[(2*n - 1)*(4*n - 1), {n, 0, 50}] (* G. C. Greubel, Jul 06 2017 *) LinearRecurrence[{3,-3,1},{1,3,21},50] (* Harvey P. Dale, Aug 25 2019 *)
-
PARI
vector(60, n, n--; (2*n-1)*(4*n-1)) \\ Michel Marcus, Apr 12 2015
Formula
a(n) = a(n-1) + 16*n - 14 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Jul 06 2017: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-2).
E.g.f.: (1 + 2*x + 8*x^2)*exp(x).
G.f.: (1 + 15*x^2)/(1 - x)^3. (End)
From Amiram Eldar, Jan 03 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + Pi/4 - log(2)/2.
Sum_{n>=0} (-1)^n/a(n) = 1 + (sqrt(2)-1)*Pi/4 + log(sqrt(2)-1)/sqrt(2). (End)
Extensions
More terms from Michel Marcus, Apr 12 2015
Comments