A033569 a(n) = (2*n - 1)*(3*n + 1).
-1, 4, 21, 50, 91, 144, 209, 286, 375, 476, 589, 714, 851, 1000, 1161, 1334, 1519, 1716, 1925, 2146, 2379, 2624, 2881, 3150, 3431, 3724, 4029, 4346, 4675, 5016, 5369, 5734, 6111, 6500, 6901, 7314, 7739, 8176, 8625, 9086, 9559, 10044, 10541, 11050, 11571
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([0..50], n-> (2*n-1)*(3*n+1)) # G. C. Greubel, Apr 02 2019
-
Haskell
a033569 n = (2 * n - 1) * (3 * n + 1) a033569_list = map a033569 [0..] -- Reinhard Zumkeller, Jul 05 2015
-
Magma
[(2*n-1)*(3*n+1): n in [0..50]]; // Vincenzo Librandi, Jul 07 2012
-
Maple
A033569:=n->(2*n-1)*(3*n+1): seq(A033569(n), n=0..50); # Wesley Ivan Hurt, Dec 06 2014
-
Mathematica
CoefficientList[Series[(-1+7*x+6*x^2)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 07 2012 *)
-
PARI
a(n)=(2*n-1)*(3*n+1) \\ Charles R Greathouse IV, Jun 17 2017
-
Sage
[(2*n-1)*(3*n+1) for n in (0..50)] # G. C. Greubel, Apr 02 2019
Formula
G.f.: (-1+7*x+6*x^2)/(1-x)^3. - Vincenzo Librandi, Jul 07 2012
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). - Vincenzo Librandi, Jul 07 2012
E.g.f.: (-1+5*x+6*x^2)*e^x. - Robert Israel, Dec 07 2014
Sum_{n>=0} 1/a(n) = 2/5*(log(2)-1) -sqrt(3)*Pi/30 -3*log(3)/10 = -0.6337047... - R. J. Mathar, Apr 22 2024
Comments