cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A008959 Final digit of squares: a(n) = n^2 mod 10.

Original entry on oeis.org

0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4, 9, 6, 5, 6, 9, 4, 1, 0
Offset: 0

Views

Author

N. J. A. Sloane, Mar 15 1996

Keywords

Comments

a(m*n) = a(m)*a(n) mod 10; a(5*n+k) = a(5*n-k) for k <= 5*n. - Reinhard Zumkeller, Apr 24 2009
a(n) = n^6 mod 10. - Zerinvary Lajos, Nov 06 2009
a(n) = A002015(n) mod 10 = A174452(n) mod 10. - Reinhard Zumkeller, Mar 21 2010
Decimal expansion of 166285490/1111111111. - Alexander R. Povolotsky, Mar 09 2013

Crossrefs

Programs

Formula

Periodic with period 10. - Franklin T. Adams-Watters, Mar 13 2006
a(n) = 4.5 - (1 + 5^(1/2))*cos(Pi*n/5) + (-1 - 3/5*5^(1/2))*cos(2*Pi*n/5) + (5^(1/2) - 1)*cos(3*Pi*n/5) + (-1 + 3/5*5^(1/2))*cos(4*Pi*n/5) - 0.5*(-1)^n. - Richard Choulet, Dec 12 2008
a(n) = A010879(A000290(n)). - Reinhard Zumkeller, Jan 04 2009
G.f.: (x^9+4*x^8+9*x^7+6*x^6+5*x^5+6*x^4+9*x^3+4*x^2+x)/(-x^10+1). - Colin Barker, Aug 14 2012
a(n) = n^2 - 10*floor(n^2/10). - Wesley Ivan Hurt, Jun 12 2013
a(n) = (n - 5*A002266(n + 2))^2 + 5*(5*A002266(n + 2) mod 2). - Wesley Ivan Hurt, Jun 06 2014
a(n) = A033569(n+3) mod 10. - Wesley Ivan Hurt, Dec 06 2014
a(n) = n^k mod 10; for k > 0 where k mod 4 = 2. - Doug Bell, Jun 15 2015

A259758 Squarefree semiprimes of the form (2*p - 3) * (3*p - 2), p prime.

Original entry on oeis.org

21, 91, 209, 589, 851, 2881, 7739, 10541, 16171, 26069, 29329, 75151, 95129, 110839, 165169, 194219, 216409, 220991, 264389, 374749, 411601, 653069, 717949, 829931, 1108969, 1119311, 1171741, 1269139, 1416689, 2059789, 3161729, 3374249, 3428459, 4924109
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 05 2015

Keywords

Comments

a(n) = (2*A259730(n) - 3) * (3*A259730(n) - 2);
3431 = A033569(24) = (2*25-3)*(3*25-2) = 47*73 = A006881(946) is the smallest term in the intersection of A006881 and A033569 not belonging to this sequence.

Examples

			.    n | p = A259730(n) | 2*p - 3 | 3*p - 2 |   a(n)
.  ----+----------------+---------+---------+--------
.    1 |              3 |       3 |       7 |     21
.    2 |              5 |       7 |      13 |     91
.    3 |              7 |      11 |      19 |    209
.    4 |             11 |      19 |      31 |    589
.    5 |             13 |      23 |      37 |    851
.    6 |             23 |      43 |      67 |   2881
.    7 |             37 |      71 |     109 |   7739
.    8 |             43 |      83 |     127 |  10541
.    9 |             53 |     103 |     157 |  16171
.   10 |             67 |     131 |     199 |  26069
.   11 |             71 |     139 |     211 |  29329
.   12 |            113 |     223 |     337 |  75151  .
		

Crossrefs

Cf. A259730, subsequence of A006881, subsequence of A033569.

Programs

  • Haskell
    a259758 n = (2 * p - 3) * (3 * p - 2)  where p = a259730 n
  • Mathematica
    Select[Table[(2p-3)(3p-2),{p,Prime[Range[200]]}],PrimeOmega[#]==2&&SquareFreeQ[ #]&] (* Harvey P. Dale, Jul 20 2022 *)

Formula

a(n) = 6*A259730(n)^2 - 13*A259730(n) + 6.
Showing 1-2 of 2 results.