A033577 a(n) = (3*n+1) * (4*n+1).
1, 20, 63, 130, 221, 336, 475, 638, 825, 1036, 1271, 1530, 1813, 2120, 2451, 2806, 3185, 3588, 4015, 4466, 4941, 5440, 5963, 6510, 7081, 7676, 8295, 8938, 9605, 10296, 11011, 11750, 12513, 13300, 14111, 14946, 15805, 16688, 17595, 18526, 19481, 20460, 21463
Offset: 0
Examples
See A056105 example section for hexagonal spiral of Ulam diagram. - _Robert G. Wilson v_, Jul 06 2014
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n-> (3*n+1)*(4*n+1)); # G. C. Greubel, Oct 12 2019
-
Magma
[(3*n+1)*(4*n+1) : n in [0..50]]; // Wesley Ivan Hurt, Jul 06 2014
-
Maple
A033577:=n->(3*n+1)*(4*n+1): seq(A033577(n), n=0..50); # Wesley Ivan Hurt, Jul 06 2014
-
Mathematica
f[n_] := (3n + 1)(4n + 1); Array[f, 50, 0] (* Robert G. Wilson v, Jul 06 2014 *) LinearRecurrence[{3,-3,1},{1,20,63},50] (* Harvey P. Dale, Jul 16 2020 *)
-
PARI
vector(50, m, 12*m^2 - 17*m + 6) \\ Michel Marcus, Jul 06 2014
-
PARI
Vec((1 + 17*x + 6*x^2) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Dec 12 2016
-
Sage
[(3*n+1)*(4*n+1) for n in range(50)] # G. C. Greubel, Oct 12 2019
Formula
From Colin Barker, Dec 12 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2.
G.f.: (1 + 17*x + 6*x^2)/(1-x)^3. (End)
E.g.f.: (1 + 19*x + 12*x^2)*exp(x). - G. C. Greubel, Oct 12 2019
Extensions
More terms from Wesley Ivan Hurt, Jul 06 2014
Comments