cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033585 a(n) = 2*n*(4*n + 1).

Original entry on oeis.org

0, 10, 36, 78, 136, 210, 300, 406, 528, 666, 820, 990, 1176, 1378, 1596, 1830, 2080, 2346, 2628, 2926, 3240, 3570, 3916, 4278, 4656, 5050, 5460, 5886, 6328, 6786, 7260, 7750, 8256, 8778, 9316, 9870, 10440, 11026, 11628, 12246, 12880, 13530, 14196, 14878, 15576
Offset: 0

Views

Author

Keywords

Comments

If Y is a fixed 3-subset of a (4n+1)-set X then a(n) is the number of (4n-1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007
Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 03 2011

Crossrefs

Cf. A000217.

Programs

Formula

a(n) = 2*A007742(n).
a(n) = A000217(4*n) = A014105(2*n). - Reinhard Zumkeller, Sep 17 2008
a(n) = 16*n + a(n-1) - 6 with a(0) = 0. - Vincenzo Librandi, Aug 05 2010
a(n) = A005843(n)*A016813(n). - Omar E. Pol, Oct 31 2013
G.f.: -2*x*(5+3*x)/(x-1)^3 . - R. J. Mathar, Feb 06 2017
E.g.f.: (8*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 18 2017
From Amiram Eldar, Jul 22 2020: (Start)
Sum_{n>=1} 1/a(n) = 2 - Pi/4 - 3*log(2)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/4 + sqrt(2)*arcsinh(1)/2 + log(2)/2 - 2. (End)