A033585 a(n) = 2*n*(4*n + 1).
0, 10, 36, 78, 136, 210, 300, 406, 528, 666, 820, 990, 1176, 1378, 1596, 1830, 2080, 2346, 2628, 2926, 3240, 3570, 3916, 4278, 4656, 5050, 5460, 5886, 6328, 6786, 7260, 7750, 8256, 8778, 9316, 9870, 10440, 11026, 11628, 12246, 12880, 13530, 14196, 14878, 15576
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Milan Janjic, Two Enumerative Functions.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. A000217.
Programs
-
Maple
seq(binomial(4*n+1,2), n=0..36); # Zerinvary Lajos, Jan 21 2007
-
Mathematica
f[n_]:=2*n*(4*n+1);f[Range[0,60]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011 *)
-
PARI
a(n)=2*n*(4*n+1) \\ Charles R Greathouse IV, Jun 16 2017
Formula
a(n) = 2*A007742(n).
a(n) = 16*n + a(n-1) - 6 with a(0) = 0. - Vincenzo Librandi, Aug 05 2010
G.f.: -2*x*(5+3*x)/(x-1)^3 . - R. J. Mathar, Feb 06 2017
E.g.f.: (8*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 18 2017
From Amiram Eldar, Jul 22 2020: (Start)
Sum_{n>=1} 1/a(n) = 2 - Pi/4 - 3*log(2)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(2)*Pi/4 + sqrt(2)*arcsinh(1)/2 + log(2)/2 - 2. (End)
Comments