cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033593 a(n) = (n-1)*(2*n-1)*(3*n-1)*(4*n-1).

Original entry on oeis.org

1, 0, 105, 880, 3465, 9576, 21505, 42120, 74865, 123760, 193401, 288960, 416185, 581400, 791505, 1053976, 1376865, 1768800, 2238985, 2797200, 3453801, 4219720, 5106465, 6126120, 7291345, 8615376, 10112025, 11795680, 13681305, 15784440, 18121201, 20708280, 23562945
Offset: 0

Views

Author

Keywords

Comments

The sequence of n such that n is prime and (2*n+1) is prime is the sequence of Sophie Germain primes A005384; the subsequence of those for which in addition (3*n+2) is prime is A067256; and the subsequence of those for which in addition (4*n+3) is prime is A067257. - Jonathan Vos Post, Dec 15 2004

Crossrefs

a(n) = A011245(-n).

Programs

  • Magma
    [ 24*n^4-50*n^3+35*n^2-10*n+1: n in [0..40]]; // Vincenzo Librandi, Jan 30 2011
    
  • Magma
    [&*[s*n-1: s in [1..4]]: n in [0..40]]; // Bruno Berselli, May 23 2011
    
  • Maple
    1, seq( n^4*pochhammer((n-1)/n, 4), n=1..40); # G. C. Greubel, Mar 05 2020
  • Mathematica
    Table[1-10 n+35 n^2-50 n^3+24 n^4,{n,0,40}] (* or *) LinearRecurrence[{5,-10, 10,-5,1}, {1,0,105,880,3465}, 40]  (* Harvey P. Dale, Jan 29 2011 & Apr 26 2011 *)
  • PARI
    a(n)=24*n^4-50*n^3+35*n^2-10*n+1 \\ Charles R Greathouse IV, May 23 2011
    
  • Sage
    [1]+[n^4*rising_factorial((n-1)/n, 4) for n in (1..40)] # G. C. Greubel, Mar 05 2020

Formula

G.f.: (1 -5*x +115*x^2 +345*x^3 +120*x^4)/(1-x)^5. - R. J. Mathar, Jan 30 2011
From G. C. Greubel, Mar 05 2020: (Start)
a(n) = n^4* Pochhammer((n-1)/n, 4).
E.g.f.: (1 - x + 53*x^2 + 94*x^3 + 24*x^4)*exp(x). (End)
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=2} 1/a(n) = 29/36 + (4/3 - 3*sqrt(3)/4)*Pi - 12*log(2) + 27*log(3)/4.
Sum_{n>=2} (-1)^n/a(n) = (1 + 4*sqrt(2)/3 - 3*sqrt(3)/2)*Pi + 14*log(2)/3 - 4*sqrt(2)*log(2)/3 + 8*sqrt(2)*log(2-sqrt(2))/3 - 29/36. (End)