A033631 Numbers k such that sigma(phi(k)) = sigma(k) where sigma is the sum of divisors function A000203 and phi is the Euler totient function A000010.
1, 87, 362, 1257, 1798, 5002, 9374, 21982, 22436, 25978, 35306, 38372, 41559, 50398, 51706, 53098, 53314, 56679, 65307, 68037, 89067, 108946, 116619, 124677, 131882, 136551, 136762, 138975, 144014, 160629, 165554, 170037, 186231, 192394, 197806
Offset: 1
Keywords
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 87, p. 29, Ellipses, Paris 2008.
- R. K. Guy, Unsolved Problems in Number Theory, B42.
- D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books 1997.
- David Wells, Curious and Interesting Numbers (Revised), Penguin Books, page 114.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
- J.-M. De Koninck, F. Luca, Positive integers n such that sigma(phi(n))=sigma(n), JIS 11 (2008) 08.1.5.
- S. W. Golomb, Equality among number-theoretic functions, Unpublished manuscript. (Annotated scanned copy)
Programs
-
Magma
[k:k in [1..200000]| DivisorSigma(1,EulerPhi(k)) eq DivisorSigma(1,k)]; // Marius A. Burtea, Feb 09 2020
-
Mathematica
Do[If[DivisorSigma[1, EulerPhi[n]]==DivisorSigma[1, n], Print[n]], {n, 1, 10^5}]
-
PARI
is(n)=sigma(eulerphi(n))==sigma(n) \\ Charles R Greathouse IV, Feb 13 2013
Extensions
Entry revised by N. J. A. Sloane, Apr 10 2006
Comments