cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A115619 Sigma(A033631(n)) {sigma is the sum of divisors function A000203}.

Original entry on oeis.org

1, 120, 546, 1680, 2880, 7812, 14520, 34200, 40320, 40320, 53760, 68796, 63360, 76608, 78624, 80640, 89280, 86400, 95040, 90720, 129600, 178560, 155496, 205920, 214272, 190080, 223200, 245520, 241920, 244800, 267840, 280800, 259200, 312480, 345600, 313560, 393120, 374976, 401760, 367200, 464256
Offset: 1

Views

Author

Lekraj Beedassy, Jan 26 2006

Keywords

Programs

A115620 Phi(A033631(n)) {phi is the Euler totient function A000010}.

Original entry on oeis.org

1, 56, 180, 836, 840, 2400, 4536, 10584, 10920, 12540, 17388, 18720, 23736, 24864, 25500, 26220, 23760, 32376, 39560, 45356, 53960, 49680, 77744, 71208, 60720, 87032, 62640, 69120, 63840, 91776, 76560, 97128, 118712, 88560, 83160
Offset: 1

Views

Author

Lekraj Beedassy, Jan 26 2006

Keywords

Extensions

Corrected and extended by Franklin T. Adams-Watters, May 12 2006

A108510 Primes p such that 3^A000027*(7*p) is a subsequence of A033631.

Original entry on oeis.org

1979, 2699, 7649, 1131569, 2482199, 2886839, 90425537, 2774476799
Offset: 1

Views

Author

Farideh Firoozbakht, Jun 07 2005

Keywords

Comments

There is no further term up to prime(300000000).

Examples

			Let n be a natural number and m=3^n*7*90425537;
then sigma(phi(m)) = sigma(3^(n-1)*2*6*90425536) = sigma(3^n*2^8*677*2087) = sigma(3^n)*8*90425538 = sigma(3^n)*sigma(7)*sigma(90425537) = sigma(3^n*7*90425537) = sigma(m),
hence m is in A033631 and the prime number 90425537 is a term of this sequence.
		

Crossrefs

A006872 Numbers k such that phi(k) = phi(sigma(k)).

Original entry on oeis.org

1, 3, 15, 26, 39, 45, 74, 104, 111, 117, 122, 146, 175, 183, 195, 219, 296, 314, 333, 357, 386, 471, 488, 549, 554, 555, 579, 584, 585, 608, 626, 646, 657, 794, 831, 842, 914, 915, 939, 962, 1071, 1082, 1095, 1191, 1226, 1256, 1263, 1292, 1322, 1346
Offset: 1

Views

Author

Keywords

References

  • S. W. Golomb, Equality among number-theoretic functions, Abstract 882-11-16, Abstracts Amer. Math. Soc., 14 (1993), 415-416.
  • R. K. Guy, Unsolved Problems in Number Theory, B42.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000010, A000203, A062401, A353637 (characteristic function).
Positions of zeros in A353636.
Setwise difference of A353684 and A353683, and also of A353685 and A353686.
Intersection of A353684 and A353685.
Subsequences: A260021, A353634, A353635, A353679 (odd terms).

Programs

  • Haskell
    a006872 n = a006872_list !! (n-1)
    a006872_list = filter (\x -> a000010' x == a000010' (a000203' x)) [1..]
    -- Reinhard Zumkeller, Jul 14 2015
    
  • Magma
    [n:n in [1..2000]| EulerPhi(SumOfDivisors(n)) eq EulerPhi(n)]; // Marius A. Burtea, Jan 01 2019
  • Mathematica
    Select[Range@ 1350, EulerPhi@ # == EulerPhi@ DivisorSigma[1, #] &] (* Michael De Vlieger, Jan 01 2019 *)
  • PARI
    lista(nn) = {for (i=1, nn, if (eulerphi(i)==eulerphi(sigma(i)), print1(i, ", ")););} \\ Michel Marcus, May 25 2013
    

Extensions

More terms from Jud McCranie

A066831 Numbers k such that sigma(k) divides sigma(phi(k)).

Original entry on oeis.org

1, 13, 71, 87, 89, 181, 203, 305, 319, 362, 667, 899, 1257, 1363, 1421, 1525, 1711, 1798, 1889, 2407, 2501, 2933, 3103, 4609, 4615, 4687, 4843, 5002, 5191, 6583, 7123, 7625, 7627, 9374, 9947, 10063, 10411, 10991, 11107, 12989, 13543, 13891, 14587
Offset: 1

Views

Author

Benoit Cloitre, Jan 19 2002

Keywords

Comments

For odd n, if sigma(phi(n))/sigma(n)=3 then sigma(phi(2*n))/sigma(2*n)=1. - Vladeta Jovovic, Jan 21 2002.
Comments from Vim Wenders, Nov 01 2006: (Start)
This is almost certainly false for even n. For odd n we have phi(n)=phi(2n) and with sigma(2)=3 trivially sigma(phi(n))/sigma(n)=3 <=> sigma(phi(2n))/sigma(2n) = sigma(phi(n))/3.sigma(n)=1.
But suppose n=2m, m odd: again with phi(2m)=phi(m) and sigma(2)=3, sigma(phi(2m)) / sigma(2m)=3 => sigma(phi( m)) /3sigma( m)=3 => sigma(phi( m)) / sigma( m)=9; and with sigma(4)=7 sigma( phi(4m))/ sigma(4m)=1 => sigma(2phi( m))/7sigma( m)=1 => sigma(2phi( m))/ sigma( m)=7. So we get the condition sigma(phi( m)) / sigma( m)=9 <=> sigma(2phi( m))/ sigma( m)=7 which will fail. So if there is a (very) big odd number n in A066831 (numbers n such that sigma(n) divides sigma(phi(n))) with A066831(n) = 9, the conjecture is wrong. I admit I could not yet find such a number, nor do i really know it exists, i.e., A067385(9) exists. (End)

References

  • R. K. Guy, Unsolved Problems in Number Theory, B42.

Crossrefs

Programs

  • Mathematica
    For[ n=1, True, n++, If[ Mod[ DivisorSigma[ 1, EulerPhi[ n ] ], DivisorSigma[ 1, n ] ]==0, Print[ n ] ] ]
    Select[Range[15000],Divisible[DivisorSigma[1, EulerPhi[#]], DivisorSigma[1,#]]&] (* Harvey P. Dale, Oct 19 2011 *)
  • PARI
    isok(k) = { sigma(eulerphi(k)) % sigma(k) == 0 } \\ Harry J. Smith, Mar 30 2010

Extensions

More terms from Vladeta Jovovic and Robert G. Wilson v, Jan 20 2002
Edited by Dean Hickerson, Jan 20 2002

A067382 Numbers n such that sigma(phi(n))/sigma(n) = 2.

Original entry on oeis.org

13, 71, 89, 203, 305, 319, 667, 1363, 1421, 1525, 1711, 1889, 2407, 2933, 3103, 4609, 4615, 4843, 5191, 6583, 7123, 7625, 7627, 9947, 10063, 10411, 11107, 13543, 13891, 14587, 16327, 17023, 19693, 20851, 23075, 24331, 24721, 25027, 25723
Offset: 1

Views

Author

Dean Hickerson, Jan 20 2002

Keywords

Comments

Sequence is infinite. Contains subsequences like 5^i*61, 5^i*13*71, 7^i*29 ... (see also Farideh Firoozbakht's comment on A033631.) - vim(AT)gmx.li, Nov 03 2006

Crossrefs

Programs

  • Mathematica
    For[ n=1, True, n++, If[ DivisorSigma[ 1, EulerPhi[ n ] ]/DivisorSigma[ 1, n ]==2, Print[ n ] ] ]
  • PARI
    is(n)=sigma(eulerphi(n=factor(n)))/sigma(n)==2 \\ Charles R Greathouse IV, Nov 27 2013

A067383 Numbers n such that sigma(phi(n))/sigma(n) = 3.

Original entry on oeis.org

181, 899, 2501, 4687, 10991, 12989, 17653, 25199, 25853, 26549, 26657, 54473, 65941, 68381, 72007, 82777, 96197, 98903, 102719, 116449, 124013, 135907, 150121, 169153, 188917, 193553, 201173, 207461, 219559, 234301, 237961, 239279
Offset: 1

Views

Author

Dean Hickerson, Jan 20 2002

Keywords

Crossrefs

Programs

  • Mathematica
    For[ n=1, True, n++, If[ DivisorSigma[ 1, EulerPhi[ n ] ]/DivisorSigma[ 1, n ]==3, Print[ n ] ] ]
    Select[Range[250000],DivisorSigma[1,EulerPhi[#]]/DivisorSigma[1,#]==3&] (* Harvey P. Dale, Sep 08 2024 *)
  • PARI
    is(n)=sigma(eulerphi(n=factor(n)))/sigma(n)==3 \\ Charles R Greathouse IV, Nov 27 2013

A067384 Numbers n such that sigma(phi(n))/sigma(n) = 4.

Original entry on oeis.org

121679, 1043909, 2350171, 2918263, 3396103, 3566807, 3688067, 4019467, 4562827, 5963407, 7300697, 7485979, 7853933, 8103301, 8364151, 9237779, 9514213, 9638527, 10531123, 11094619, 11384447, 12721937, 13576267
Offset: 1

Views

Author

Dean Hickerson, Jan 20 2002

Keywords

Comments

Subsequence of A066881. - R. J. Mathar, Sep 30 2008

Crossrefs

Programs

  • Mathematica
    For[ n=1, True, n++, If[ DivisorSigma[ 1, EulerPhi[ n ] ]/DivisorSigma[ 1, n ]==4, Print[ n ] ] ]
  • PARI
    is(n)=sigma(phi(n=factor(n)))/sigma(n)==4 \\ Charles R Greathouse IV, Nov 27 2013

A067385 a(n) is smallest x such that sigma(phi(x))/sigma(x) = n.

Original entry on oeis.org

1, 13, 181, 121679, 1033474069
Offset: 1

Views

Author

Dean Hickerson, Jan 20 2002

Keywords

Comments

A023199(6) < a(6) <= 1794819234390989. - Donovan Johnson, Oct 24 2011

Crossrefs

Programs

  • Mathematica
    a[ n_ ] := For[ x=1, True, x++, If[ DivisorSigma[ 1, EulerPhi[ x ] ]/DivisorSigma[ 1, x ]==n, Return[ x ] ] ]

Extensions

a(5) from Vim Wenders, Mar 11 2007

A197952 Numbers n such that sigma(phi(n))/sigma(n) = 5.

Original entry on oeis.org

1033474069, 1604277377, 2741806637, 9941342981, 14754456491, 14859359791, 15887724883, 16990353761, 17266051069, 20892536447, 21776951239, 24435763193, 25165559143, 32325726313, 38313868379, 38580669727, 38856433193, 47906215417, 49094416289, 56237053007
Offset: 1

Views

Author

Donovan Johnson, Oct 19 2011

Keywords

Examples

			sigma(phi(25165559143))/sigma(25165559143) = 127671828480/25534365696 = 5.
		

Crossrefs

Programs

  • PARI
    for(n=1033474069, 3*10^10, if(sigma(eulerphi(n))/sigma(n)==5, print1(n, ", ")))

Extensions

a(14)-a(20) from Donovan Johnson, Nov 11 2011
Showing 1-10 of 14 results. Next