A033664 Every suffix is prime.
2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 103, 107, 113, 137, 167, 173, 197, 223, 283, 307, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 503, 523, 547, 607, 613, 617, 643, 647, 653, 673, 683, 743, 773, 797, 823, 853, 883, 907, 937, 947
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..66973 (first 8779 terms from T. D. Noe)
- Eric Weisstein's World of Mathematics, Truncatable Prime.
Crossrefs
Programs
-
Haskell
a033664 n = a033664_list !! (n-1) a033664_list = filter (all ((== 1) . a010051. read) . init . tail . tails . show) a000040_list -- Reinhard Zumkeller, Jul 10 2013
-
Maple
T:= proc(n) option remember; `if`(n=0, "", select(isprime, [seq(seq( seq(parse(cat(j, 0$(n-i), p)), p=[T(i-1)]), i=1..n), j=1..9)])[]) end: seq(T(n), n=1..4); # Alois P. Heinz, Sep 01 2021
-
Mathematica
h8pQ[n_]:=And@@PrimeQ/@Most[NestWhileList[FromDigits[Rest[ IntegerDigits[ #]]]&, n,#>0&]]; Select[Prime[Range[1000]],h8pQ] (* Harvey P. Dale, May 26 2011 *)
-
PARI
fileO="b033664.txt";lim=8779;v=vector(lim);v[1]=2;v[2]=3;v[3]=5;v[4]=7;j=4; write(fileO,"1 2");write(fileO,"2 3");write(fileO,"3 5");write(fileO,"4 7"); p10=1;until(0,p10*=10;j0=j;for(k=1,9,k10=k*p10; for(i=1,j0,if(j==lim,break(3));z=k10+v[i]; if(isprime(z),j++;v[j]=z;write(fileO,j," ",z);)))) \\ Harry J. Smith, Sep 20 2008
-
Python
from sympy import isprime, primerange def ok(p): # does prime p satisfy the property s = str(p) return all(isprime(int(s[i:])) for i in range(1, len(s))) print(list(filter(ok, primerange(1, 1000)))) # Michael S. Branicky, Sep 01 2021
-
Python
# alternate for going to large numbers def agen(maxdigits): yield from [2, 3, 5, 7] primestrs, digits, d = ["2", "3", "5", "7"], "0123456789", 1 while len(primestrs) > 0 and d < maxdigits: cands = set(d+p for p in primestrs for d in "0123456789") primestrs = [c for c in cands if c[0] == "0" or isprime(int(c))] yield from sorted(map(int, (p for p in primestrs if p[0] != "0"))) d += 1 print([p for p in agen(11)]) # Michael S. Branicky, Sep 01 2021
Extensions
More terms from Erich Friedman
Comments