cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033683 a(n) = 1 if n is an odd square not divisible by 3, otherwise 0.

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Examples

			G.f. = x + x^25 + x^49 + x^121 + x^169 + x^289 + x^361 + x^529 + x^625 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 105, Eq. (41).

Crossrefs

Programs

  • Haskell
    a033683 n = fromEnum $ odd n && mod n 3 > 0 && a010052 n == 1
    -- Reinhard Zumkeller, Nov 14 2015
    
  • Magma
    Basis( ModularForms( Gamma0(144), 1/2), 106)[2]; /* Michael Somos, Dec 07 2019 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x^4] - EllipticTheta[ 2, 0, x^36])/2, {x, 0, n}] // PowerExpand; (* Michael Somos, Dec 07 2019 *)
    Table[If[OddQ[n]&&IntegerQ[Sqrt[n]]&&Mod[n,3]!=0,1,0],{n,0,120}] (* Harvey P. Dale, Sep 06 2020 *)
  • PARI
    {a(n) = if( n%24 == 1, issquare(n), 0)}; /* Michael Somos, Jan 26 2008 */
    

Formula

Essentially the series psi_6(z)=(1/2)(theta_2(z/9)-theta_2(z)).
a(A104777(n)) = 1.
A080995(n) = a(24n+1).
Multiplicative with a(p^e) = 1 if 2 divides e and p > 3, 0 otherwise. - Mitch Harris, Jun 09 2005
Euler transform of a period 144 sequence. - Michael Somos, Jan 26 2008
a(n) = A033684(n) * A000035(n).
Dirichlet g.f.: zeta(2*s) *(1-2^(-2s)) *(1-3^(-2s)). - R. J. Mathar, Mar 10 2011
G.f.: Sum_{k in Z} x^(6*k+1)^2. - Michael Somos, Dec 07 2019
Sum_{k=1..n} a(k) ~ sqrt(n)/3. - Amiram Eldar, Jan 14 2024