A033683 a(n) = 1 if n is an odd square not divisible by 3, otherwise 0.
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Examples
G.f. = x + x^25 + x^49 + x^121 + x^169 + x^289 + x^361 + x^529 + x^625 + ...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 105, Eq. (41).
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
- Index entries for characteristic functions.
Programs
-
Haskell
a033683 n = fromEnum $ odd n && mod n 3 > 0 && a010052 n == 1 -- Reinhard Zumkeller, Nov 14 2015
-
Magma
Basis( ModularForms( Gamma0(144), 1/2), 106)[2]; /* Michael Somos, Dec 07 2019 */
-
Mathematica
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x^4] - EllipticTheta[ 2, 0, x^36])/2, {x, 0, n}] // PowerExpand; (* Michael Somos, Dec 07 2019 *) Table[If[OddQ[n]&&IntegerQ[Sqrt[n]]&&Mod[n,3]!=0,1,0],{n,0,120}] (* Harvey P. Dale, Sep 06 2020 *)
-
PARI
{a(n) = if( n%24 == 1, issquare(n), 0)}; /* Michael Somos, Jan 26 2008 */
Formula
Essentially the series psi_6(z)=(1/2)(theta_2(z/9)-theta_2(z)).
a(A104777(n)) = 1.
A080995(n) = a(24n+1).
Multiplicative with a(p^e) = 1 if 2 divides e and p > 3, 0 otherwise. - Mitch Harris, Jun 09 2005
Euler transform of a period 144 sequence. - Michael Somos, Jan 26 2008
Dirichlet g.f.: zeta(2*s) *(1-2^(-2s)) *(1-3^(-2s)). - R. J. Mathar, Mar 10 2011
G.f.: Sum_{k in Z} x^(6*k+1)^2. - Michael Somos, Dec 07 2019
Sum_{k=1..n} a(k) ~ sqrt(n)/3. - Amiram Eldar, Jan 14 2024