cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033761 Product t2(q^d); d | 2, where t2 = theta2(q)/(2*q^(1/4)).

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 1, 1, 1, 1, 0, 3, 1, 0, 2, 1, 1, 1, 0, 1, 3, 1, 2, 0, 0, 1, 2, 1, 0, 3, 1, 0, 2, 1, 1, 2, 0, 1, 0, 2, 1, 2, 1, 0, 3, 0, 1, 3, 0, 0, 2, 1, 0, 0, 1, 2, 4, 1, 1, 0, 1, 1, 1, 0, 1, 3, 1, 1, 0, 1, 1, 2, 1, 0, 3, 0, 1, 4, 0, 1, 0, 1, 0, 2, 1, 1, 2, 0, 0, 2, 2, 1, 3, 0, 0, 2, 2, 1, 0, 2, 1, 0, 1, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also the number of representations of n as the sum of a triangular number and twice a triangular number. - James Sellers, Dec 21 2005
Also the number of positive odd solutions to equation x^2 + 2*y^2 = 8*n + 3. - Seiichi Manyama, May 28 2017

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + x^5 + 2*x^6 + x^7 + x^8 + x^9 + x^10 + 3*x^12 + ...
G.f. = q^3 + q^11 + q^19 + 2*q^27 + q^43 + 2*q^51 + q^59 + q^67 + q^75 + q^83 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(32), 1), 840); A[4] + A[12]; /* Michael Somos, Jan 31 2015 */
  • Maple
    sigmamr := proc(n,m,r) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if modp(d,m) = r then a := a+1 ; end if; end do: a; end proc:
    A002325 := proc(n) sigmamr(n,8,1)+sigmamr(n,8,3)-sigmamr(n,8,5)-sigmamr(n,8,7) ; end proc:
    A033761 := proc(n) A002325(8*n+3)/2 ; end proc:
    seq(A033761(n),n=0..90) ; # R. J. Mathar, Mar 23 2011
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^2] / 4, {q, 0, 2 n + 3/4}]; (* Michael Somos, Nov 16 2011 *)
    QP = QPochhammer; s = QP[q^2]*(QP[q^4]^2/QP[q]) + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Nov 27 2015, adapted from PARI *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A)^2 / eta(x + A), n))}; /* Michael Somos, Jul 05 2006 */
    

Formula

Euler transform of period 4 sequence [1, 0, 1, -2, ...]. - Vladeta Jovovic, Sep 14 2004
Expansion of psi(q) * psi(q^2) in powers of q where psi() is a Ramanujan theta function.
Expansion of q^(-3/8) * eta(q^2) * eta^2(q^4) / eta(q) in powers of q. - Michael Somos, Jul 05 2006
Expansion of q^(-3/4) * (theta_2(q) * theta_2(q^2)) / 4 in powers of q^2. - Michael Somos, Jul 05 2006
Given g.f. A(x), then B(x) = x^3 * A(x^8) satisfies 0 = f(B(x), B(x^2), B(x^3), B(x^6)) where f(u1, u2, u3, u6) = u1^4*u6^2 + 3*u2^2*u3^4 - 4*u1*u2*u3*u6 * (u2^2 + 3*u6^2). - Michael Somos, Jul 05 2006
a(n) = A002325(8*n+3)/2. [Hirschhorn] - R. J. Mathar, Mar 23 2011
a(n) = A027414(8*n + 3). - Michael Somos, Nov 16 2011
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 2^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A082564. - Michael Somos, Jan 31 2015
From Peter Bala, Jan 07 2021: (Start)
G.f.: A(x) = Sum_{n = -oo..oo} x^n/(1 - x^(8*n + 3)). See Agarwal, p. 285, equation 6.19.
A(x^2) = Sum_{n = -oo..oo} x^(2*n)/(1 - x^(8*n + 3)). Cf. A121444. (End)
A(q^2) = (1/2)*Sum_{k >= 0} q^k/(1 + q^(4*k+3)) + (1/2)*Sum_{k >= 0} q^(3*k)/(1 + q^(4*k+1)) - set z = 1 and replace q with q^2 in Anguelova, equation 3.35. - Peter Bala, Mar 03 2021

Extensions

More terms from Vladeta Jovovic, Sep 14 2004