A033846 Numbers whose prime factors are 2 and 5.
10, 20, 40, 50, 80, 100, 160, 200, 250, 320, 400, 500, 640, 800, 1000, 1250, 1280, 1600, 2000, 2500, 2560, 3200, 4000, 5000, 5120, 6250, 6400, 8000, 10000, 10240, 12500, 12800, 16000, 20000, 20480, 25000, 25600, 31250, 32000, 40000, 40960
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
import Data.Set (singleton, deleteFindMin, insert) a033846 n = a033846_list !! (n-1) a033846_list = f (singleton (2*5)) where f s = m : f (insert (2*m) $ insert (5*m) s') where (m,s') = deleteFindMin s -- Reinhard Zumkeller, Sep 13 2011
-
Magma
[n:n in [1..100000]| Set(PrimeDivisors(n)) eq {2,5}]; // Marius A. Burtea, May 10 2019
-
Maple
A033846 := proc(n) if (numtheory[factorset](n) = {2,5}) then RETURN(n) fi: end: seq(A033846(n),n=1..50000); # Jani Melik, Feb 24 2011
-
Mathematica
Take[Union[Times@@@Select[Flatten[Table[Tuples[{2,5},n],{n,2,15}],1], Length[Union[#]]>1&]],45] (* Harvey P. Dale, Dec 15 2011 *)
-
PARI
isA033846(n)=factor(n)[,1]==[2,5]~ \\ Charles R Greathouse IV, Feb 24 2011
Formula
a(n) = 10*A003592(n).
A143201(a(n)) = 4. - Reinhard Zumkeller, Sep 13 2011
Sum_{n>=1} 1/a(n) = 1/4. - Amiram Eldar, Dec 22 2020
Extensions
Offset fixed by Reinhard Zumkeller, Sep 13 2011
Comments