cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033931 a(n) = lcm(n,n+1,n+2).

Original entry on oeis.org

6, 12, 60, 60, 210, 168, 504, 360, 990, 660, 1716, 1092, 2730, 1680, 4080, 2448, 5814, 3420, 7980, 4620, 10626, 6072, 13800, 7800, 17550, 9828, 21924, 12180, 26970, 14880, 32736, 17952, 39270, 21420, 46620, 25308, 54834, 29640, 63960, 34440, 74046, 39732, 85140
Offset: 1

Views

Author

Keywords

Comments

Also denominator of h(n+2) - h(n-1), where h(n) is the n-th harmonic number Sum_{k=1..n} 1/k, the numerator is A188386. - Reinhard Zumkeller, Jul 04 2012

Crossrefs

Programs

  • Haskell
    a033931 n = lcm n (lcm (n + 1) (n + 2))  -- Reinhard Zumkeller, Jul 04 2012
    
  • Magma
    [Numerator((n^3-n)/(n^2+1)): n in [2..50]]; // Vincenzo Librandi, Aug 19 2014
    
  • Maple
    a:= n-> ilcm($n..n+2):
    seq(a(n), n=1..50);  # Alois P. Heinz, Jul 18 2025
  • Mathematica
    LCM@@@Partition[Range[50],3,1] (* or *) LinearRecurrence[{0,4,0,-6,0,4,0,-1},{6,12,60,60,210,168,504,360},50] (* Harvey P. Dale, Jun 29 2019 *)
  • PARI
    a(n) = lcm(n^2+n,n+2) \\ Charles R Greathouse IV, Sep 30 2016

Formula

a(n) = n*(n+1)*(n+2)*[3-(-1)^n]/4.
From Reinhard Zumkeller, Jul 04 2012: (Start)
a(n) = 6 * A067046(n).
A007947(a(n)) = A078637(n). (End)
From Amiram Eldar, Sep 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 - log(2) (A244009).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2) - 2. (End)