A033931 a(n) = lcm(n,n+1,n+2).
6, 12, 60, 60, 210, 168, 504, 360, 990, 660, 1716, 1092, 2730, 1680, 4080, 2448, 5814, 3420, 7980, 4620, 10626, 6072, 13800, 7800, 17550, 9828, 21924, 12180, 26970, 14880, 32736, 17952, 39270, 21420, 46620, 25308, 54834, 29640, 63960, 34440, 74046, 39732, 85140
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (0,4,0,-6,0,4,0,-1).
- Index entries for sequences related to lcm's.
Programs
-
Haskell
a033931 n = lcm n (lcm (n + 1) (n + 2)) -- Reinhard Zumkeller, Jul 04 2012
-
Magma
[Numerator((n^3-n)/(n^2+1)): n in [2..50]]; // Vincenzo Librandi, Aug 19 2014
-
Maple
a:= n-> ilcm($n..n+2): seq(a(n), n=1..50); # Alois P. Heinz, Jul 18 2025
-
Mathematica
LCM@@@Partition[Range[50],3,1] (* or *) LinearRecurrence[{0,4,0,-6,0,4,0,-1},{6,12,60,60,210,168,504,360},50] (* Harvey P. Dale, Jun 29 2019 *)
-
PARI
a(n) = lcm(n^2+n,n+2) \\ Charles R Greathouse IV, Sep 30 2016
Formula
a(n) = n*(n+1)*(n+2)*[3-(-1)^n]/4.
From Reinhard Zumkeller, Jul 04 2012: (Start)
a(n) = 6 * A067046(n).
From Amiram Eldar, Sep 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 - log(2) (A244009).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*log(2) - 2. (End)
Comments