A033932 Least positive m such that n! + m is prime.
1, 1, 1, 1, 5, 7, 7, 11, 23, 17, 11, 1, 29, 67, 19, 43, 23, 31, 37, 89, 29, 31, 31, 97, 131, 41, 59, 1, 67, 223, 107, 127, 79, 37, 97, 61, 131, 1, 43, 97, 53, 1, 97, 71, 47, 239, 101, 233, 53, 83, 61, 271, 53, 71, 223, 71, 149, 107, 283, 293, 271, 769, 131, 271
Offset: 0
Links
- Phillip Poplin, Table of n, a(n) for n = 0..4000 (first 501 terms from T. D. Noe, then up to n=2000 from Hans Havermann)
- Antonín Čejchan, Michal Křížek, and Lawrence Somer, On Remarkable Properties of Primes Near Factorials and Primorials, Journal of Integer Sequences, Vol. 25 (2022), Article 22.1.4.
- Index entries for sequences related to factorial numbers
Programs
-
Maple
a:= n-> (f-> nextprime(f)-f)(n!): seq(a(n), n=0..70); # Alois P. Heinz, Feb 22 2023
-
Mathematica
a[n_] := (an = 1; While[ !PrimeQ[n! + an], an++]; an); Table[a[n], {n, 0, 63}] (* Jean-François Alcover, Dec 05 2012 *) NextPrime[#]-#&/@(Range[0,70]!) (* Harvey P. Dale, May 18 2014 *)
-
PARI
for(n=0,70, k=1; while(!isprime(n!+k), k++); print1(k,","))
-
PARI
a(n) = nextprime(n!+1) - n!; \\ Michel Marcus, Dec 25 2020
-
Python
from sympy import factorial, nextprime def a(n): fn = factorial(n); return nextprime(fn) - fn print([a(n) for n in range(64)]) # Michael S. Branicky, May 22 2022
Formula
a(n) = A151800(n!) - n!. - Max Alekseyev, Jul 23 2014
Extensions
More terms from Jud McCranie
a(21) onwards from Wouter Meeussen
Better description from Rick L. Shepherd, Nov 06 2002
Comments