cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034178 Number of solutions to n = a^2 - b^2, a > b >= 0.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 0, 2, 2, 1, 0, 1, 1, 2, 0, 1, 2, 2, 0, 2, 1, 1, 0, 1, 2, 2, 0, 2, 2, 1, 0, 2, 2, 1, 0, 1, 1, 3, 0, 1, 3, 2, 0, 2, 1, 1, 0, 2, 2, 2, 0, 1, 2, 1, 0, 3, 3, 2, 0, 1, 1, 2, 0, 1, 3, 1, 0, 3, 1, 2, 0, 1, 3, 3, 0, 1, 2, 2, 0, 2, 2, 1, 0, 2, 1, 2, 0, 2, 4, 1, 0, 3
Offset: 1

Views

Author

Keywords

Comments

Also, number of ways n can be expressed as the sum of one or more consecutive odd numbers. (E.g., 45 = 45 = 13+15+17 = 5+7+9+11+13, so a(45)=3.) - Naohiro Nomoto, Feb 26 2002
a(A042965(n))>0, a(A016825(n))=0; also number of occurrences of n in A094728. - Reinhard Zumkeller, May 24 2004
It appears a(n) can be found by adding together the divisor pairs of n and finding the number of even results. For example: n=9 has the divisor pairs (1,9) and (3,3); adding the pairs: 1+9=10 is even and 3+3=6 is even, so a(9)=2. Another example: n=96 has the divisor pairs (1,96) (2,48) (3,32) (4,24) (6,16) (8,12); when each pair is added there are 4 even results, so a(96)=4. - Gregory Bryant, Dec 06 2016
It appears a(n) is the number of nonnegative integers k for which sqrt(k) + sqrt(k + n) is an integer. For example: a(2015) = 4 since there are only four nonnegative integers k for which sqrt(k) + sqrt(k + 2015) is an integer, namely k = 289, 5041, 39601, 1014049. - Joseph Barrera, Nov 29 2020

Examples

			G.f. = x + x^3 + x^4 + x^5 + x^7 + x^8 + 2*x^9 + x^11 + x^12 + x^13 + 2*x^15 + ...
From _Bernard Schott_, Apr 19 2019: (Start)
a(8) = floor((A000005(2) + 1)/2) = floor(3/2) = 1 and 8 = 3^2 - 1^2.
a(9) = floor((A000005(9) + 1)/2) = floor(4/2) = 2 and 9 = 3^2 - 0^2 = 5^2 - 4^2.
a(10) = 0 and a^2 - b^2 = 10 has no solution.
a(11) = floor(A000005(11) + 1)/2 = floor(3/2) = 1 and 11 = 6^2 - 5^2.  (End)
		

Crossrefs

Programs

  • Mathematica
    nn = 100; t = Table[0, {nn}]; Do[n = a^2 - b^2; If[n <= nn, t[[n]]++], {a, nn}, {b, 0, a - 1}];t (* T. D. Noe, May 04 2011 *)
    Table[Length[FindInstance[a^2-b^2==n&&a>b>=0,{a,b},Integers,10]],{n,100}] (* Harvey P. Dale, Jul 28 2021 *)
  • PARI
    a(n)=sum(k=1, sqrtint(n), (n-k^2)%(2*k)==0) \\ Charles R Greathouse IV, Sep 27 2012
    
  • PARI
    a(n)=sumdiv(n, d, n>=d^2 && (n-d^2)%(2*d)==0) \\ Charles R Greathouse IV, Sep 27 2012
    
  • Python
    from sympy import divisor_count as d
    def a(n): return (d(n)+1)//2 if n%2==1 else ((d(n//4)+1)//2 if n%4==0 else 0)
    # Ely Golden, Jan 26 2025

Formula

From Naohiro Nomoto, Feb 26 2002: (Start)
a(2k) = A038548(2k) - A001227(k).
a(2k+1) = A038548(2k+1). (End)
From Bernard Schott, Apr 11 2019: (Start) (see Crux link)
a(n) = 0 if n == 2 (mod 4)
a(n) = floor((A000005(n) + 1)/2) if n == 1 or n == 3 (mod 4)
a(n) = floor((A000005(n/4) + 1)/2) if n == 0 (mod 4). (End)
G.f.: Sum_{i>=1} Sum_{j>=i} Product_{k=i..j} x^(2*k-1). - Ilya Gutkovskiy, Apr 18 2019
G.f.: Sum_{n>=1} x^(n^2)/(1-x^(2*n)) (conjecture). - Joerg Arndt, Jan 04 2024