cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034263 a(n) = binomial(n+4,4)*(4*n+5)/5.

Original entry on oeis.org

1, 9, 39, 119, 294, 630, 1218, 2178, 3663, 5863, 9009, 13377, 19292, 27132, 37332, 50388, 66861, 87381, 112651, 143451, 180642, 225170, 278070, 340470, 413595, 498771, 597429, 711109, 841464, 990264, 1159400, 1350888, 1566873, 1809633, 2081583, 2385279
Offset: 0

Views

Author

Keywords

Comments

Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005
5-dimensional form of hexagonal-based pyramid numbers. - Ben Creech (mathroxmysox(AT)yahoo.com), Nov 17 2005
Convolution of triangular numbers (A000217) and hexagonal numbers (A000384). - Bruno Berselli, Jun 27 2013

Examples

			By the third comment: A000217(1..6) and A000384(1..6) give the term a(5) = 1*21+5*15+12*10+22*6+35*3+51*1 = 630. - _Bruno Berselli_, Jun 27 2013
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-8.
  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (pp. 167-169, Table 10.5/II/4).

Crossrefs

Partial sums of A002417.
Cf. similar sequences listed in A254142.

Programs

  • GAP
    List([0..35], n-> (4*n+5)*Binomial(n+4,4)/5); # G. C. Greubel, Aug 28 2019
  • Magma
    [(4*n+5)*Binomial(n+4,4)/5: n in [0..35]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    a:=n->(n+1)*(n+2)*(n+3)*(n+4)*(4*n+5)/120: seq(a(n),n=0..35); # Emeric Deutsch, Nov 18 2005
  • Mathematica
    Table[Binomial[n+4, 4]*(4*n+5)/5, {n,0,35}] (* Vladimir Joseph Stephan Orlovsky, Jan 26 2012 *)
    a[n_] := (1+n)(2+n)(3+n)(4+n)(4n+5)/120; Array[a, 36, 0] (* or *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 9, 39, 119, 294, 630}, 36] (* or *)
    CoefficientList[ Series[(1+3*x)/(1-x)^6, {x, 0, 35}], x] (* Robert G. Wilson v, Feb 26 2015 *)
    Table[Sum[-x^2 + y^2 + z^2, {x, 0, g}, {y, x, g}, {z, y, g}], {g, 1, 30}]/4 (* Horst H. Manninger, Jun 19 2025 *)
  • PARI
    a(n)=(n+1)*(n+2)*(n+3)*(n+4)*(4*n+5)/120 \\ Charles R Greathouse IV, Sep 24 2015, corrected by Altug Alkan, Aug 15 2017
    
  • Sage
    [(4*n+5)*binomial(n+4,4)/5 for n in (0..35)] # G. C. Greubel, Aug 28 2019
    

Formula

a(n) = A093561(n+5, 5).
a(n) = A034261(n+1, 3).
G.f.: (1+3*x)/(1-x)^6.
a(n) = (n+1)*(n+2)*(n+3)*(n+4)*(4*n+5)/120. - Emeric Deutsch and Ben Creech (mathroxmysox(AT)yahoo.com), Nov 17 2005, corrected by Eric Rowland, Aug 15 2017
a(-n-4) = -A059599(n). - Bruno Berselli, Aug 23 2011
a(n) = Sum_{i=1..n+1} i*A000292(i). - Bruno Berselli, Jan 23 2015
Sum_{n>=0} 1/a(n) = 28300/231 - 1280*Pi/77 - 7680*log(2)/77. - Amiram Eldar, Feb 15 2022

Extensions

Corrected and extended by N. J. A. Sloane, Apr 21 2000