A051947 Partial sums of A034263.
1, 10, 49, 168, 462, 1092, 2310, 4488, 8151, 14014, 23023, 36400, 55692, 82824, 120156, 170544, 237405, 324786, 437437, 580888, 761530, 986700, 1264770, 1605240, 2018835, 2517606, 3115035, 3826144, 4667608, 5657872, 6817272, 8168160, 9735033, 11544666
Offset: 0
References
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Mathematica
Nest[Accumulate,Range[1,160,4],5] (* Vladimir Joseph Stephan Orlovsky, Jan 29 2012 *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,10,49,168,462,1092,2310},40] (* Harvey P. Dale, Nov 08 2024 *)
Formula
a(n) = C(n+5, 5)*(2n+3)/3.
G.f.: (1+3*x)/(1-x)^7.
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=0} 1/a(n) = 2161/28 - 768*log(2)/7.
Sum_{n>=0} (-1)^n/a(n) = 192*Pi/7 - 624*log(2)/7 - 657/28. (End)
Extensions
Corrected by T. D. Noe, Nov 09 2006
Comments