cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A050483 Partial sums of A051947.

Original entry on oeis.org

1, 11, 60, 228, 690, 1782, 4092, 8580, 16731, 30745, 53768, 90168, 145860, 228684, 348840, 519384, 756789, 1081575, 1519012, 2099900, 2861430, 3848130, 5112900, 6718140, 8736975, 11254581, 14369616, 18195760, 22863368, 28521240, 35338512, 43506672, 53241705, 64786371
Offset: 0

Views

Author

Barry E. Williams, Dec 26 1999

Keywords

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A051947.
Cf. A093561 ((4, 1) Pascal, column m=7).

Programs

  • Mathematica
    Table[(4*n + 7)*Binomial[n + 6, 6]/7, {n, 0, 40}] (* Amiram Eldar, Feb 15 2022 *)

Formula

a(n) = C(n+6, 6)*(4n+7)/7.
G.f.: (1+3*x)/(1-x)^8. - proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009
Sum_{n>=0} 1/a(n) = 57344*Pi/663 - 114688*log(2)/221 + 295372/3315. - Amiram Eldar, Feb 15 2022

A093561 (4,1) Pascal triangle.

Original entry on oeis.org

1, 4, 1, 4, 5, 1, 4, 9, 6, 1, 4, 13, 15, 7, 1, 4, 17, 28, 22, 8, 1, 4, 21, 45, 50, 30, 9, 1, 4, 25, 66, 95, 80, 39, 10, 1, 4, 29, 91, 161, 175, 119, 49, 11, 1, 4, 33, 120, 252, 336, 294, 168, 60, 12, 1, 4, 37, 153, 372, 588, 630, 462, 228, 72, 13, 1, 4, 41, 190, 525, 960, 1218
Offset: 0

Views

Author

Wolfdieter Lang, Apr 22 2004

Keywords

Comments

The array F(4;n,m) gives in the columns m >= 1 the figurate numbers based on A016813, including the hexagonal numbers A000384 (see the W. Lang link).
This is the fourth member, d=4, in the family of triangles of figurate numbers, called (d,1) Pascal triangles: A007318 (Pascal), A029653 and A093560, for d=1..3.
This is an example of a Riordan triangle (see A093560 for a comment and A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group). Therefore the o.g.f. for the row polynomials p(n,x) = Sum_{m=0..n} a(n,m)*x^m is G(z,x) = (1+3*z)/(1-(1+x)*z).
The SW-NE diagonals give A000285(n-1) = Sum_{k=0..ceiling((n-1)/2)} a(n-1-k,k), n >= 1, with n=0 value 3. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
For a closed-form formula for generalized Pascal's triangle see A228576. - Boris Putievskiy, Sep 09 2013
The n-th row polynomial is (4 + x)*(1 + x)^(n-1) for n >= 1. More generally, the n-th row polynomial of the Riordan array ( (1-a*x)/(1-b*x), x/(1-b*x) ) is (b - a + x)*(b + x)^(n-1) for n >= 1. - Peter Bala, Mar 02 2018

Examples

			Triangle begins
  [1];
  [4, 1];
  [4, 5, 1];
  [4, 9, 6, 1];
  ...
		

References

  • Kurt Hawlitschek, Johann Faulhaber 1580-1635, Veroeffentlichung der Stadtbibliothek Ulm, Band 18, Ulm, Germany, 1995, Ch. 2.1.4. Figurierte Zahlen.
  • Ivo Schneider, Johannes Faulhaber 1580-1635, Birkhäuser, Basel, Boston, Berlin, 1993, ch.5, pp. 109-122.

Crossrefs

Cf. Row sums: A020714(n-1), n>=1, 1 for n=0, alternating row sums are 1 for n=0, 3 for n=2 and 0 otherwise.
Columns m=1..9: A016813, A000384 (hexagonal), A002412, A002417, A034263, A051947, A050483, A052181, A055843.

Programs

  • Haskell
    a093561 n k = a093561_tabl !! n !! k
    a093561_row n = a093561_tabl !! n
    a093561_tabl = [1] : iterate
                   (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [4, 1]
    -- Reinhard Zumkeller, Aug 31 2014
    
  • Python
    from math import comb, isqrt
    def A093561(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*(r+3*(r-a))//r if n else 1 # Chai Wah Wu, Nov 12 2024

Formula

a(n, m) = F(4;n-m, m) for 0<= m <= n, otherwise 0, with F(4;0, 0)=1, F(4;n, 0)=4 if n>=1 and F(4;n, m) = (4*n+m)*binomial(n+m-1, m-1)/m if m>=1.
Recursion: a(n, m)=0 if m>n, a(0, 0)= 1; a(n, 0)=4 if n>=1; a(n, m)= a(n-1, m) + a(n-1, m-1).
G.f. row m (without leading zeros): (1+3*x)/(1-x)^(m+1), m>=0.
T(n, k) = C(n, k) + 3*C(n-1, k). - Philippe Deléham, Aug 28 2005
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(4 + 9*x + 6*x^2/2! + x^3/3!) = 4 + 13*x + 28*x^2/2! + 50*x^3/3! + 80*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 22 2014

A082680 Triangle read by rows: T(n,k) is the number of 2-stack sortable n-permutations with k runs.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 20, 49, 20, 1, 1, 35, 168, 168, 35, 1, 1, 56, 462, 900, 462, 56, 1, 1, 84, 1092, 3630, 3630, 1092, 84, 1, 1, 120, 2310, 12012, 20449, 12012, 2310, 120, 1, 1, 165, 4488, 34320, 91091, 91091, 34320, 4488, 165, 1, 1, 220, 8151, 87516, 340340, 529984, 340340, 87516, 8151, 220, 1
Offset: 1

Views

Author

Ralf Stephan, May 19 2003

Keywords

Comments

Number of beta(1,0)-trees on n+1 nodes with k leaves.
Row sums are given by A000139. - F. Chapoton, Nov 17 2015
T(n,k) is the number of rooted non-separable planar maps with n+1 edges, k+1 faces and n+2-k vertices. - Andrew Howroyd, Mar 29 2021

Examples

			Triangle starts:
  1;
  1,  1;
  1,  4,    1;
  1, 10,   10,    1;
  1, 20,   49,   20,    1;
  1, 35,  168,  168,   35,    1;
  1, 56,  462,  900,  462,   56,  1;
  1, 84, 1092, 3630, 3630, 1092, 84, 1;
  ...
		

Crossrefs

Cf. A000292 (2nd column), A051947 (3rd column).
Cf. A000139 (row sums).
Similar to A008292 and A001263.

Programs

  • Mathematica
    Table[(n+k-1)!(2n-k)!/k!/(n+1-k)!/(2k-1)!/(2n-2k+1)!,{n,10},{k,n}]//Flatten (* Harvey P. Dale, Jun 10 2020 *)
  • PARI
    T(n, k) = (n+k-1)!*(2*n-k)!/k!/(n+1-k)!/(2*k-1)!/(2*n-2*k+1)! \\ Andrew Howroyd, Mar 29 2021

Formula

T(n, k) = (n+k-1)!*(2*n-k)!/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!).

Extensions

Terms a(52) and beyond from Andrew Howroyd, Mar 29 2021

A125233 Triangle T(n,k) read by rows, the (n-k)-th term of the k times repeated partial sum of the hexagonal numbers, 0 <= k < n, 0 < n.

Original entry on oeis.org

1, 6, 1, 15, 7, 1, 28, 22, 8, 1, 45, 50, 30, 9, 1, 66, 95, 80, 39, 10, 1, 91, 161, 175, 119, 49, 11, 1, 120, 252, 336, 294, 168, 60, 12, 1, 153, 372, 588, 630, 462, 228, 72, 13, 1, 190, 525, 960, 1218, 1092, 690, 300, 85, 14, 1, 231, 715, 1485, 2178, 2310, 1782, 990, 385, 99, 15, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 24 2006

Keywords

Comments

Left border = A000384, hexagonal numbers. The following columns are A002412, A002417, A034263, A051947, ...
Row sums = (1, 7, 23, 59, 135, 291, ...) = A126284.
A125232 is the analogous triangle for the pentagonal numbers.

Examples

			First few rows of the triangle:
   1;
   6,   1;
  15,   7,   1;
  28,  22,   8,   1;
  45,  50,  30,   9,  1;
  66,  95,  80,  39, 10,  1;
  91, 161, 175, 119, 49, 11, 1;
  ...
Example: (5,3) = 80 = 30 + 50 = (4,3) + (4,2).
		

References

  • Albert H. Beiler, "Recreations in the Theory of Numbers", Dover, 1964, p. 189.

Crossrefs

Programs

  • Maple
    A000384Psum:= proc(n,k) coeftayl( x*(1+3*x)/(1-x)^(3+k),x=0,n) ; end: A125233 := proc(n,k) A000384Psum(n-k,k) ; end: for n from 1 to 15 do for k from 0 to n -1 do printf("%d,",A125233(n,k)) ; od: od: # R. J. Mathar, May 03 2008
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 0, n (2 n - 1), 1 <= k < n, T[n - 1, k] + T[n - 1, k - 1], True, 0];
    Table[T[n, k], {n, 1, 11}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Sep 14 2023, after R. J. Mathar *)

Formula

T(n,0)=A000384(n). T(n,k) = T(n-1,k) + T(n-1,k-1), k>1. - R. J. Mathar, May 03 2008

Extensions

Edited and extended by R. J. Mathar, May 03 2008, and M. F. Hasler, Sep 29 2012

A112852 Table with row lengths 1 1 2 3 5 9 17 33 65 ... which counts the objects described in A047970 and A112508.

Original entry on oeis.org

1, 2, 4, 1, 7, 6, 1, 11, 20, 8, 3, 1, 16, 50, 33, 21, 10, 3, 6, 4, 1, 22, 105, 98, 81, 49, 21, 48, 36, 12, 3, 6, 12, 10, 4, 10, 5, 1, 29, 196, 238, 231, 168, 81, 210, 168, 68
Offset: 0

Views

Author

Alford Arnold, Sep 24 2005

Keywords

Comments

The row sums are 1 2 5 14 43 144 523 2048 8597 ... A047970. The columns are essentially A000124, A002415, A051836, A112851, A051947, ...

Examples

			The table begins
1
2
4 1
7 6 1
11 20 8 3 1
16 50 33 21 10 3 6 4 1
22 105 98 81 49 21
		

Crossrefs

Showing 1-5 of 5 results.