A342981
Triangle read by rows: T(n,k) is the number of rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 7, 5, 0, 1, 16, 37, 14, 0, 1, 30, 150, 176, 42, 0, 1, 50, 449, 1104, 794, 132, 0, 1, 77, 1113, 4795, 7077, 3473, 429, 0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430, 0, 1, 156, 4788, 47832, 189183, 319320, 228810, 63004, 4862
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 7, 5;
0, 1, 16, 37, 14;
0, 1, 30, 150, 176, 42;
0, 1, 50, 449, 1104, 794, 132;
0, 1, 77, 1113, 4795, 7077, 3473, 429;
0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430;
...
-
G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
H[n_] := With[{g = 1 + x*y + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
CoefficientList[#, y]& /@ CoefficientList[H[10], x] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
-
\\ here G(n, y) gives A082680 as g.f.
G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
H(n)={my(g=1+x*y+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
{ my(T=H(8)); for(n=1, #T, print(T[n])) }
A342980
Triangle read by rows: T(n,k) is the number of rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 8, 1, 0, 0, 1, 20, 20, 1, 0, 0, 1, 38, 131, 38, 1, 0, 0, 1, 63, 469, 469, 63, 1, 0, 0, 1, 96, 1262, 3008, 1262, 96, 1, 0, 0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0, 0, 1, 190, 5780, 42602, 83088, 42602, 5780, 190, 1, 0
Offset: 0
Triangle begins:
1;
0, 0;
0, 1, 0;
0, 1, 1, 0;
0, 1, 8, 1, 0;
0, 1, 20, 20, 1, 0;
0, 1, 38, 131, 38, 1, 0;
0, 1, 63, 469, 469, 63, 1, 0;
0, 1, 96, 1262, 3008, 1262, 96, 1, 0;
0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0;
...
-
G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
H[n_] := With[{g = 1 + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
Join[{{1}, {0, 0}}, Append[CoefficientList[#, y], 0]& /@ CoefficientList[ H[11], x][[3;;]]] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
-
\\ here G(n,y) gives A082680 as g.f.
G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
H(n)={my(g=1+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
{ my(T=H(8)); for(n=1, #T, print(T[n])) }
A278880
Triangle where g.f. S = S(x,m) satisfies: S = x/(G(-S^2)*G(-m*S^2)) such that G(x) = 1 + x*G(x)^2 is the g.f. of the Catalan numbers (A000108), as read by rows of coefficients T(n,k) of x^(2*n-1)*m^k in S(x,m) for n>=1, k=0..n-1.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 14, 14, 1, 1, 30, 81, 30, 1, 1, 55, 308, 308, 55, 1, 1, 91, 910, 1872, 910, 91, 1, 1, 140, 2268, 8250, 8250, 2268, 140, 1, 1, 204, 4998, 29172, 51425, 29172, 4998, 204, 1, 1, 285, 10032, 87780, 247247, 247247, 87780, 10032, 285, 1, 1, 385, 18711, 233376, 980980, 1565109, 980980, 233376, 18711, 385, 1, 1, 506, 32890, 562419, 3354780, 7970144, 7970144, 3354780, 562419, 32890, 506, 1
Offset: 1
This triangle of coefficients of x^(2*n-1)*m^k in S(x,m) for n>=1, k=0..n-1, begins:
1;
1, 1;
1, 5, 1;
1, 14, 14, 1;
1, 30, 81, 30, 1;
1, 55, 308, 308, 55, 1;
1, 91, 910, 1872, 910, 91, 1;
1, 140, 2268, 8250, 8250, 2268, 140, 1;
1, 204, 4998, 29172, 51425, 29172, 4998, 204, 1;
1, 285, 10032, 87780, 247247, 247247, 87780, 10032, 285, 1;
1, 385, 18711, 233376, 980980, 1565109, 980980, 233376, 18711, 385, 1;
1, 506, 32890, 562419, 3354780, 7970144, 7970144, 3354780, 562419, 32890, 506, 1; ...
Generating function:
S(x,m) = x + (m + 1)*x^3 + (m^2 + 5*m + 1)*x^5 +
(m^3 + 14*m^2 + 14*m + 1)*x^7 +
(m^4 + 30*m^3 + 81*m^2 + 30*m + 1)*x^9 +
(m^5 + 55*m^4 + 308*m^3 + 308*m^2 + 55*m + 1)*x^11 +
(m^6 + 91*m^5 + 910*m^4 + 1872*m^3 + 910*m^2 + 91*m + 1)*x^13 +
(m^7 + 140*m^6 + 2268*m^5 + 8250*m^4 + 8250*m^3 + 2268*m^2 + 140*m + 1)*x^15 +...
where S = S(x,m) satisfies:
S = x / ( G(-S^2) * G(-m*S^2) ) such that G(x) = 1 + x*G(x)^2.
Also,
S = x * (1 + x*S) * (1 + m*x*S) / (1 - m*x^2*S^2)^2,
where related series C = C(x,m) and D = D(x,m) satisfy
S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C,
such that
C = C^2 - S^2,
D = D^2 - m*S^2.
...
The square of the g.f. begins:
S(x,m)^2 = x^2 + (2*m + 2)*x^4 + (3*m^2 + 12*m + 3)*x^6 +
(4*m^3 + 40*m^2 + 40*m + 4)*x^8 + (5*m^4 + 100*m^3 + 245*m^2 + 100*m + 5)*x^10 +
(6*m^5 + 210*m^4 + 1008*m^3 + 1008*m^2 + 210*m + 6)*x^12 +
(7*m^6 + 392*m^5 + 3234*m^4 + 6300*m^3 + 3234*m^2 + 392*m + 7)*x^14 +
(8*m^7 + 672*m^6 + 8736*m^5 + 29040*m^4 + 29040*m^3 + 8736*m^2 + 672*m + 8)*x^16 +...+ x^(2*n)*Sum_{k=0,n-1} n*A082680(n,k+1)*m^k +...
where A082680(n,k+1) = (n+k)!*(2*n-k-1)!/((k+1)!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!).
- Paul D. Hanna, Table of n, a(n) for n = 1..1035 for rows 1..45 of the flattened form of this triangle.
- Enrica Duchi, Veronica Guerrini, Simone Rinaldi, and Gilles Schaeffer, Fighting Fish: enumerative properties, arXiv:1611.04625 [math.CO], 2016.
- Thomas Einolf, Robert Muth, and Jeffrey Wilkinson, Injectively k-colored rooted forests, arXiv:2107.13417 [math.CO], 2021.
- Zai-Ting Huang, Congruence Properties From Fish Numbers, Master's thesis, Nat'l Taiwan Normal Univ. (2025) 31944792.
-
T[n_, k_] := (2n-1)/((2n-2k-1)(2k+1)) Binomial[2n-k-2, k] Binomial[n+k-1, n-k-1];
Table[T[n, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 26 2018 *)
-
{T(n,k) = my(S=x,C=1,D=1); for(i=0,2*n, S = x*C*D + O(x^(2*n+2)); C = 1 + x*S*D; D = 1 + m*x*S*C;); polcoeff(polcoeff(S,2*n-1,x),k,m)}
for(n=1,15, for(k=0,n-1, print1(T(n,k),", "));print(""))
-
/* Explicit formula for T(n,k) */
{T(n,k) = (2*n-1)/((2*n-2*k-1)*(2*k+1)) * binomial(2*n-k-2,k) * binomial(n+k-1,n-k-1)}
for(n=1,15, for(k=0,n-1, print1(T(n,k),", "));print(""))
A342989
Triangle read by rows: T(n,k) is the number of nonseparable rooted toroidal maps with n edges and k faces, n >= 2, k = 1..n-1.
Original entry on oeis.org
1, 4, 4, 10, 39, 10, 20, 190, 190, 20, 35, 651, 1568, 651, 35, 56, 1792, 8344, 8344, 1792, 56, 84, 4242, 33580, 64667, 33580, 4242, 84, 120, 8988, 111100, 361884, 361884, 111100, 8988, 120, 165, 17490, 317680, 1607125, 2713561, 1607125, 317680, 17490, 165
Offset: 2
Triangle begins:
1;
4, 4;
10, 39, 10;
20, 190, 190, 20;
35, 651, 1568, 651, 35;
56, 1792, 8344, 8344, 1792, 56;
84, 4242, 33580, 64667, 33580, 4242, 84;
120, 8988, 111100, 361884, 361884, 111100, 8988, 120;
...
-
MQ(n,g,x=1)={ \\ after Quadric in A269921.
my(Q=matrix(n+1,g+1)); Q[1,1]=x;
for(n=1, n, for(g=0, min(n\2,g),
my(t = (1+x)*(2*n-1)/3 * Q[n, 1+g]
+ if(g && n>1, (2*n-3)*(2*n-2)*(2*n-1)/12 * Q[n-1, g])
+ sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Q[k, 1+i] * Q[n-k, 1+g-i]))/2);
Q[1+n, 1+g] = t * 6/(n+1); ));
Q
}
F(n,m,y,z)={my(Q=MQ(n,m,z)); sum(n=0, n, x^n*Ser(Q[1+n,]/z, y)) + O(x*x^n)}
H(n,g=1)={my(p=F(n,g,'y,'z), v=Vec(polcoef(subst(p, x, serreverse(x*p^2)), g, 'y))); vector(#v, n, Vecrev(v[n], n))}
{ my(T=H(10)); for(n=1, #T, print(T[n])) }
A278881
Triangle where g.f. C = C(x,m) and related series S = S(x,m) and D = D(x,m) satisfy S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C, as read by rows of coefficients T(n,k) of x^(2*n)*m^k in C(x,m) for n>=0, k=0..n.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 8, 3, 0, 1, 20, 30, 4, 0, 1, 40, 147, 80, 5, 0, 1, 70, 504, 672, 175, 6, 0, 1, 112, 1386, 3600, 2310, 336, 7, 0, 1, 168, 3276, 14520, 18150, 6552, 588, 8, 0, 1, 240, 6930, 48048, 102245, 72072, 16170, 960, 9, 0, 1, 330, 13464, 137280, 455455, 546546, 240240, 35904, 1485, 10, 0, 1, 440, 24453, 350064, 1701700, 3179904, 2382380, 700128, 73359, 2200, 11, 0, 1, 572, 42042, 815100, 5542680, 15148224, 17672928, 8868288, 1833975, 140140, 3146, 12, 0
Offset: 0
This triangle of coefficients of x^(2*n)*m^k in C(x,m) for n>=0, k=0..n, begins:
1;
1, 0;
1, 2, 0;
1, 8, 3, 0;
1, 20, 30, 4, 0;
1, 40, 147, 80, 5, 0;
1, 70, 504, 672, 175, 6, 0;
1, 112, 1386, 3600, 2310, 336, 7, 0;
1, 168, 3276, 14520, 18150, 6552, 588, 8, 0;
1, 240, 6930, 48048, 102245, 72072, 16170, 960, 9, 0;
1, 330, 13464, 137280, 455455, 546546, 240240, 35904, 1485, 10, 0;
1, 440, 24453, 350064, 1701700, 3179904, 2382380, 700128, 73359, 2200, 11, 0;
1, 572, 42042, 815100, 5542680, 15148224, 17672928, 8868288, 1833975, 140140, 3146, 12, 0; ...
Generating function:
C(x,m) = 1 + x^2 + (1 + 2*m)*x^4 + (1 + 8*m + 3*m^2)*x^6 +
(1 + 20*m + 30*m^2 + 4*m^3)*x^8 +
(1 + 40*m + 147*m^2 + 80*m^3 + 5*m^4)*x^10 +
(1 + 70*m + 504*m^2 + 672*m^3 + 175*m^4 + 6*m^5)*x^12 +
(1 + 112*m + 1386*m^2 + 3600*m^3 + 2310*m^4 + 336*m^5 + 7*m^6)*x^14 +
(1 + 168*m + 3276*m^2 + 14520*m^3 + 18150*m^4 + 6552*m^5 + 588*m^6 + 8*m^7)*x^16 +...
where g.f. C = C(x,m) and related series S = S(x,m) and D = D(x,m) satisfy
S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C,
such that
C = C^2 - S^2,
D = D^2 - m*S^2.
The square of the g.f. begins:
C(x,m)^2 = 1 + 2*x^2 + (4*m + 3)*x^4 + (6*m^2 + 20*m + 4)*x^6 +
(8*m^3 + 70*m^2 + 60*m + 5)*x^8 +
(10*m^4 + 180*m^3 + 392*m^2 + 140*m + 6)*x^10 +
(12*m^5 + 385*m^4 + 1680*m^3 + 1512*m^2 + 280*m + 7)*x^12 +
(14*m^6 + 728*m^5 + 5544*m^4 + 9900*m^3 + 4620*m^2 + 504*m + 8)*x^14 +
(16*m^7 + 1260*m^6 + 15288*m^5 + 47190*m^4 + 43560*m^3 + 12012*m^2 + 840*m + 9)*x^16 +
(18*m^8 + 2040*m^7 + 36960*m^6 + 180180*m^5 + 286286*m^4 + 156156*m^3 + 27720*m^2 + 1320*m + 10)*x^18 +...
- Paul D. Hanna, Table of n, a(n) for n = 0..1080 for rows 0..45 of the flattened form of this triangle.
- Thomas Einolf, Robert Muth, and Jeffrey Wilkinson, Injectively k-colored rooted forests, arXiv:2107.13417 [math.CO], 2021.
- Tad White, Quota Trees, arXiv:2401.01462 [math.CO], 2024. See p. 20.
-
{T(n,k) = my(S=x,C=1,D=1); for(i=0,2*n, S = x*C*D + O(x^(2*n+2)); C = 1 + x*S*D; D = 1 + m*x*S*C;); polcoeff(polcoeff(C,2*n,x),k,m)}
for(n=0,15, for(k=0,n, print1(T(n,k),", "));print(""))
-
/* Explicit formula for T(n, k) */
{T(n,k) = if(k==0,1, if(n==k,0, (n+k)!*(2*n-k-1)!/(k!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!) ))}
for(n=0, 15, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Dec 11 2016
A278882
Triangle where g.f. D = D(x,m) and related series S = S(x,m) and C = C(x,m) satisfy S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C, as read by rows of coefficients T(n,k) of x^(2*n)*m^k in C(x,m) for n>=1, k=0..n.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 3, 8, 1, 0, 4, 30, 20, 1, 0, 5, 80, 147, 40, 1, 0, 6, 175, 672, 504, 70, 1, 0, 7, 336, 2310, 3600, 1386, 112, 1, 0, 8, 588, 6552, 18150, 14520, 3276, 168, 1, 0, 9, 960, 16170, 72072, 102245, 48048, 6930, 240, 1, 0, 10, 1485, 35904, 240240, 546546, 455455, 137280, 13464, 330, 1, 0, 11, 2200, 73359, 700128, 2382380, 3179904, 1701700, 350064, 24453, 440, 1, 0, 12, 3146, 140140, 1833975, 8868288, 17672928, 15148224, 5542680, 815100, 42042, 572, 1
Offset: 0
This triangle of coefficients of x^(2*n)*m^k in D(x,m) for n>=0, k=0..n, begins:
1;
0, 1;
0, 2, 1;
0, 3, 8, 1;
0, 4, 30, 20, 1;
0, 5, 80, 147, 40, 1;
0, 6, 175, 672, 504, 70, 1;
0, 7, 336, 2310, 3600, 1386, 112, 1;
0, 8, 588, 6552, 18150, 14520, 3276, 168, 1;
0, 9, 960, 16170, 72072, 102245, 48048, 6930, 240, 1;
0, 10, 1485, 35904, 240240, 546546, 455455, 137280, 13464, 330, 1;
0, 11, 2200, 73359, 700128, 2382380, 3179904, 1701700, 350064, 24453, 440, 1;
0, 12, 3146, 140140, 1833975, 8868288, 17672928, 15148224, 5542680, 815100, 42042, 572, 1; ...
Generating function:
D(x,m) = 1 + m*x^2 + (2*m + m^2)*x^4 + (3*m + 8*m^2 + m^3)*x^6 +
(4*m + 30*m^2 + 20*m^3 + m^4)*x^8 +
(5*m + 80*m^2 + 147*m^3 + 40*m^4 + m^5)*x^10 +
(6*m + 175*m^2 + 672*m^3 + 504*m^4 + 70*m^5 + m^6)*x^12 +
(7*m + 336*m^2 + 2310*m^3 + 3600*m^4 + 1386*m^5 + 112*m^6 + m^7)*x^14 +
(8*m + 588*m^2 + 6552*m^3 + 18150*m^4 + 14520*m^5 + 3276*m^6 + 168*m^7 + m^8)*x^16 +...
where g.f. D = D(x,m) and related series S = S(x,m) and C = C(x,m) satisfy
S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C,
such that
C = C^2 - S^2,
D = D^2 - m*S^2.
The square of the g.f. begins:
D(x,m)^2 = 1 + 2*m*x^2 + (3*m^2 + 4*m)*x^4 +
(4*m^3 + 20*m^2 + 6*m)*x^6 +
(5*m^4 + 60*m^3 + 70*m^2 + 8*m)*x^8 +
(6*m^5 + 140*m^4 + 392*m^3 + 180*m^2 + 10*m)*x^10 +
(7*m^6 + 280*m^5 + 1512*m^4 + 1680*m^3 + 385*m^2 + 12*m)*x^12 +
(8*m^7 + 504*m^6 + 4620*m^5 + 9900*m^4 + 5544*m^3 + 728*m^2 + 14*m)*x^14 +
(9*m^8 + 840*m^7 + 12012*m^6 + 43560*m^5 + 47190*m^4 + 15288*m^3 + 1260*m^2 + 16*m)*x^16 +
(10*m^9 + 1320*m^8 + 27720*m^7 + 156156*m^6 + 286286*m^5 + 180180*m^4 + 36960*m^3 + 2040*m^2 + 18*m)*x^18 +...
-
{T(n,k) = my(S=x,C=1,D=1); for(i=0,2*n, S = x*C*D + O(x^(2*n+2)); C = 1 + x*S*D; D = 1 + m*x*S*C;); polcoeff(polcoeff(D,2*n,x),k,m)}
for(n=0,15, for(k=0,n, print1(T(n,k),", "));print(""))
-
/* Explicit formula for T(n, k) */
{T(n, k) = if(n==k, 1, if(k==0, 0, (2*n-k)!*(n+k-1)!/(k!*(n-k)!*(2*k-1)!*(2*n-2*k+1)!) ))}
for(n=0, 15, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Dec 11 2016
A342061
Triangle read by rows: T(n,k) is the number of sensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 4, 16, 16, 4, 1, 1, 5, 38, 63, 38, 5, 1, 1, 7, 72, 218, 218, 72, 7, 1, 1, 8, 134, 622, 1075, 622, 134, 8, 1, 1, 10, 224, 1600, 4214, 4214, 1600, 224, 10, 1, 1, 12, 375, 3703, 14381, 22222, 14381, 3703, 375, 12, 1
Offset: 2
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 3, 8, 3, 1;
1, 4, 16, 16, 4, 1;
1, 5, 38, 63, 38, 5, 1;
1, 7, 72, 218, 218, 72, 7, 1;
1, 8, 134, 622, 1075, 622, 134, 8, 1;
...
-
\\ See section 4 of Walsh reference.
T(n)={
my(B=matrix(n, n, i, j, if(i+j <= n+1, (2*i+j-2)!*(2*j+i-2)!/(i!*j!*(2*i-1)!*(2*j-1)!))));
my(C(i,j)=((i+j-1)*(i+1)*(j+1)/(2*(2*i+j-1)*(2*j+i-1)))*B[(i+1)/2,(j+1)/2]);
my(D(i,j)=((j+1)/2)*B[i/2, (j+1)/2]);
my(E(i,j)=((i-1)*(j-1) + 2*(i+j)*(i+j-1))*B[i,j]);
my(F(i,j)=if(!i, j==1, ((i+j)*(6*j+2*i-5)*j*(2*i+j-1)/(2*(2*i+1)*(2*j+i-2)))*B[i,j]) + if(j-1, binomial(i+2,2)*B[i+1,j-1]));
vector(n, n, vector(n, i, my(j=n+1-i); B[i,j]
+ (i+j)*if(i%2, if(j%2, C(i,j), D(j,i)), if(j%2, D(i,j)))
+ sumdiv(i+j, d, if(d>1, eulerphi(d)*( if(i%d==0, E(i/d, j/d) ) + if(i%d==1, F((i-1)/d, (j+1)/d)) + if(j%d==1, F((j-1)/d, (i+1)/d)) )))
)/(2*n+2));
}
{ my(A=T(10)); for(n=1, #A, print(A[n])) }
A379432
Triangle read by rows: T(n,k) is the number of unsensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 3, 1, 1, 4, 13, 13, 4, 1, 1, 5, 29, 44, 29, 5, 1, 1, 7, 51, 139, 139, 51, 7, 1, 1, 8, 92, 370, 623, 370, 92, 8, 1, 1, 10, 147, 913, 2307, 2307, 913, 147, 10, 1, 1, 12, 240, 2048, 7644, 11673, 7644, 2048, 240, 12, 1, 1, 14, 357, 4295, 22344, 50174, 50174, 22344, 4295, 357, 14, 1
Offset: 2
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 3, 7, 3, 1;
1, 4, 13, 13, 4, 1;
1, 5, 29, 44, 29, 5, 1;
1, 7, 51, 139, 139, 51, 7, 1;
1, 8, 92, 370, 623, 370, 92, 8, 1;
1, 10, 147, 913, 2307, 2307, 913, 147, 10, 1;
...
Showing 1-8 of 8 results.
Comments