cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A342981 Triangle read by rows: T(n,k) is the number of rooted planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 7, 5, 0, 1, 16, 37, 14, 0, 1, 30, 150, 176, 42, 0, 1, 50, 449, 1104, 794, 132, 0, 1, 77, 1113, 4795, 7077, 3473, 429, 0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430, 0, 1, 156, 4788, 47832, 189183, 319320, 228810, 63004, 4862
Offset: 0

Views

Author

Andrew Howroyd, Apr 02 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, column k is a polynomial of degree 3*(k-2). This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.
By duality, also the number of loopless rooted planar maps with n edges and k vertices.

Examples

			Triangle begins:
  1;
  0, 1;
  0, 1,   2;
  0, 1,   7,    5;
  0, 1,  16,   37,    14;
  0, 1,  30,  150,   176,    42;
  0, 1,  50,  449,  1104,   794,   132;
  0, 1,  77, 1113,  4795,  7077,  3473,   429;
  0, 1, 112, 2422, 16456, 41850, 41504, 14893, 1430;
  ...
		

Crossrefs

Columns k=3..4 are A005581, A006468.
Diagonals are A000108, A006419, A006420, A006421.
Row sums are A000260.

Programs

  • Mathematica
    G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
    H[n_] := With[{g = 1 + x*y + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
    CoefficientList[#, y]& /@ CoefficientList[H[10], x] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
  • PARI
    \\ here G(n, y) gives A082680 as g.f.
    G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
    H(n)={my(g=1+x*y+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

G.f. A(x,y) satisfies A(x) = G(x*A(x,y)^2, y) where G(x,y) = 1 + x*y + x*B(x,y) and B(x,y) is the g.f. of A082680.
A027836(n+1) = Sum_{k=1..n+1} k*T(n,k).
A002293(n) = Sum_{k=1..n+1} k*T(n,n+2-k).

A342980 Triangle read by rows: T(n,k) is the number of rooted loopless planar maps with n edges, k faces and no isthmuses, n >= 0, k = 1..n+1.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 8, 1, 0, 0, 1, 20, 20, 1, 0, 0, 1, 38, 131, 38, 1, 0, 0, 1, 63, 469, 469, 63, 1, 0, 0, 1, 96, 1262, 3008, 1262, 96, 1, 0, 0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0, 0, 1, 190, 5780, 42602, 83088, 42602, 5780, 190, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Apr 01 2021

Keywords

Comments

The number of vertices is n + 2 - k.
For k >= 2, columns k without the initial zero term is a polynomial of degree 3*(k-2). This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
  1;
  0, 0;
  0, 1,   0;
  0, 1,   1,    0;
  0, 1,   8,    1,     0;
  0, 1,  20,   20,     1,     0;
  0, 1,  38,  131,    38,     1,    0;
  0, 1,  63,  469,   469,    63,    1,   0;
  0, 1,  96, 1262,  3008,  1262,   96,   1, 0;
  0, 1, 138, 2862, 12843, 12843, 2862, 138, 1, 0;
  ...
		

Crossrefs

Columns (and diagonals) are A006416, A006417, A006418.
Row sums are A099553(n+1).

Programs

  • Mathematica
    G[m_, y_] := Sum[x^n*Sum[(n + k - 1)!*(2*n - k)!*y^k/(k!*(n + 1 - k)!*(2*k - 1)!*(2*n - 2*k + 1)!), {k, 1, n}], {n, 1, m}] + O[x]^m;
    H[n_] := With[{g = 1 + x*G[n - 1, y]}, Sqrt[InverseSeries[x/g^2 + O[x]^(n + 1), x]/x]];
    Join[{{1}, {0, 0}}, Append[CoefficientList[#, y], 0]& /@ CoefficientList[ H[11], x][[3;;]]] // Flatten (* Jean-François Alcover, Apr 15 2021, after Andrew Howroyd *)
  • PARI
    \\ here G(n,y) gives A082680 as g.f.
    G(n,y)={sum(n=1, n, x^n*sum(k=1, n, (n+k-1)!*(2*n-k)!*y^k/(k!*(n+1-k)!*(2*k-1)!*(2*n-2*k+1)!))) + O(x*x^n)}
    H(n)={my(g=1+x*G(n-1, y), v=Vec(sqrt(serreverse(x/g^2)/x))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(8)); for(n=1, #T, print(T[n])) }

Formula

T(n,n+2-k) = T(n,k).
G.f.: A(x,y) satisfies A(x,y) = G(x*A(x,y)^2,y) where G(x,y) = 1 + x*B(x,y) and B(x,y) is the g.f. of A082680.

A278880 Triangle where g.f. S = S(x,m) satisfies: S = x/(G(-S^2)*G(-m*S^2)) such that G(x) = 1 + x*G(x)^2 is the g.f. of the Catalan numbers (A000108), as read by rows of coefficients T(n,k) of x^(2*n-1)*m^k in S(x,m) for n>=1, k=0..n-1.

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 1, 14, 14, 1, 1, 30, 81, 30, 1, 1, 55, 308, 308, 55, 1, 1, 91, 910, 1872, 910, 91, 1, 1, 140, 2268, 8250, 8250, 2268, 140, 1, 1, 204, 4998, 29172, 51425, 29172, 4998, 204, 1, 1, 285, 10032, 87780, 247247, 247247, 87780, 10032, 285, 1, 1, 385, 18711, 233376, 980980, 1565109, 980980, 233376, 18711, 385, 1, 1, 506, 32890, 562419, 3354780, 7970144, 7970144, 3354780, 562419, 32890, 506, 1
Offset: 1

Views

Author

Paul D. Hanna, Nov 29 2016

Keywords

Comments

T(n,k) = the number of fighting fish with (n-k) left lower free and (k+1) right lower free edges with a marked tail. [See Theorem 3 in the Duchi reference on Fighting Fish: enumerative properties.] - Paul D. Hanna, Dec 08 2016

Examples

			This triangle of coefficients of x^(2*n-1)*m^k in S(x,m) for n>=1, k=0..n-1, begins:
  1;
  1, 1;
  1, 5, 1;
  1, 14, 14, 1;
  1, 30, 81, 30, 1;
  1, 55, 308, 308, 55, 1;
  1, 91, 910, 1872, 910, 91, 1;
  1, 140, 2268, 8250, 8250, 2268, 140, 1;
  1, 204, 4998, 29172, 51425, 29172, 4998, 204, 1;
  1, 285, 10032, 87780, 247247, 247247, 87780, 10032, 285, 1;
  1, 385, 18711, 233376, 980980, 1565109, 980980, 233376, 18711, 385, 1;
  1, 506, 32890, 562419, 3354780, 7970144, 7970144, 3354780, 562419, 32890, 506, 1; ...
Generating function:
S(x,m) = x + (m + 1)*x^3 + (m^2 + 5*m + 1)*x^5 +
 (m^3 + 14*m^2 + 14*m + 1)*x^7 +
 (m^4 + 30*m^3 + 81*m^2 + 30*m + 1)*x^9 +
 (m^5 + 55*m^4 + 308*m^3 + 308*m^2 + 55*m + 1)*x^11 +
 (m^6 + 91*m^5 + 910*m^4 + 1872*m^3 + 910*m^2 + 91*m + 1)*x^13 +
 (m^7 + 140*m^6 + 2268*m^5 + 8250*m^4 + 8250*m^3 + 2268*m^2 + 140*m + 1)*x^15 +...
where S = S(x,m) satisfies:
S = x / ( G(-S^2) * G(-m*S^2) ) such that G(x) = 1 + x*G(x)^2.
Also,
S = x * (1 + x*S) * (1 + m*x*S) / (1 - m*x^2*S^2)^2,
where related series C = C(x,m) and D = D(x,m) satisfy
S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C,
such that
C = C^2 - S^2,
D = D^2 - m*S^2.
...
The square of the g.f. begins:
S(x,m)^2 = x^2 + (2*m + 2)*x^4 + (3*m^2 + 12*m + 3)*x^6 +
 (4*m^3 + 40*m^2 + 40*m + 4)*x^8 + (5*m^4 + 100*m^3 + 245*m^2 + 100*m + 5)*x^10 +
 (6*m^5 + 210*m^4 + 1008*m^3 + 1008*m^2 + 210*m + 6)*x^12 +
 (7*m^6 + 392*m^5 + 3234*m^4 + 6300*m^3 + 3234*m^2 + 392*m + 7)*x^14 +
 (8*m^7 + 672*m^6 + 8736*m^5 + 29040*m^4 + 29040*m^3 + 8736*m^2 + 672*m + 8)*x^16 +...+ x^(2*n)*Sum_{k=0,n-1} n*A082680(n,k+1)*m^k +...
where A082680(n,k+1) = (n+k)!*(2*n-k-1)!/((k+1)!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!).
		

Crossrefs

Cf. A278881 (C(x,m)), A278882 (D(x,m)), A278883 (central terms).
Cf. A000108, A006013 (row sums), A258313, A278745, A082680.

Programs

  • Mathematica
    T[n_, k_] := (2n-1)/((2n-2k-1)(2k+1)) Binomial[2n-k-2, k] Binomial[n+k-1, n-k-1];
    Table[T[n, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jul 26 2018 *)
  • PARI
    {T(n,k) = my(S=x,C=1,D=1); for(i=0,2*n, S = x*C*D + O(x^(2*n+2)); C = 1 + x*S*D; D = 1 + m*x*S*C;); polcoeff(polcoeff(S,2*n-1,x),k,m)}
    for(n=1,15, for(k=0,n-1, print1(T(n,k),", "));print(""))
    
  • PARI
    /* Explicit formula for T(n,k) */
    {T(n,k) = (2*n-1)/((2*n-2*k-1)*(2*k+1)) * binomial(2*n-k-2,k) * binomial(n+k-1,n-k-1)}
    for(n=1,15, for(k=0,n-1, print1(T(n,k),", "));print(""))

Formula

G.f. S = S(x,m), and related functions C = C(x,m) and D = D(x,m) satisfy:
(1.a) S = x*C*D.
(1.b) C = 1 + x*S*D.
(1.c) D = 1 + m*x*S*C.
...
(2.a) C = C^2 - S^2.
(2.b) D = D^2 - m*S^2.
(2.c) C = (1 + sqrt(1 + 4*S^2))/2.
(2.d) D = (1 + sqrt(1 + 4*m*S^2))/2.
...
(3.a) S = x*(1 + x*S)*(1 + m*x*S) / (1 - m*x^2*S^2)^2.
(3.b) C = (1 + x*S) / (1 - m*x^2*S^2).
(3.c) D = (1 + m*x*S) / (1 - m*x^2*S^2).
(3.d) S = x/((1 - x^2*D^2)*(1 - m*x^2*C^2)).
(3.e) C = 1/(1 - x^2*D^2).
(3.f) D = 1/(1 - m*x^2*C^2).
...
(4.a) x = m^2*x^4*S^5 - 2*m*x^2*S^3 - m*x^3*S^2 + (1 - (m+1)*x^2)*S.
(4.b) 0 = 1 - (1-x^2)*C - 2*m*x^2*C^2 + 2*m*x^2*C^3 + m^2*x^4*C^4 - m^2*x^4*C^5.
(4.c) 0 = 1 - (1-m*x^2)*D - 2*x^2*D^2 + 2*x^2*D^3 + x^4*D^4 - x^4*D^5.
...
(5.a) S(x,m) = Series_Reversion( x*G(-x^2)*G(-m*x^2) ), where G(x) = 1 + x*G(x)^2 is the g.f. of the Catalan numbers (A000108).
Logarithmic derivatives.
(6.a) C'/C = 2*S*S' / (C^2 + S^2).
(6.b) D'/D = 2*m*S*S' / (D^2 + m*S^2).
...
(7.a) S(x,m)^2 = Sum_{n>=1} x^(2*n) * Sum_{k=0,n-1} n*A082680(n,k+1)*m^k, where A082680(n,k+1) = (n+k)!*(2*n-k-1)!/((k+1)!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!).
...
T(n,k) = (2*n-1)/((2*n-2*k-1)*(2*k+1)) * binomial(2*n-k-2,k) * binomial(n+k-1,n-k-1). [From Theorem 3 in the Duchi reference] - Paul D. Hanna, Dec 08 2016
Row sums yield A006013(n-1) = binomial(3*n-2,n-1)/n for n>=1.
Central terms: T(2*n+1, n) = (4*n-3) * ( binomial(3*n-3,n-1)/(2*n-1) )^2 for n>=1.
Sum_{k=0..n-1} 2^k * T(n,k) = A258313(n-1) for n>=1.
Sum_{k=0..2*n-2} (-1)^k * T(2*n-1,k) = A278745(n) for n>=1.

A342989 Triangle read by rows: T(n,k) is the number of nonseparable rooted toroidal maps with n edges and k faces, n >= 2, k = 1..n-1.

Original entry on oeis.org

1, 4, 4, 10, 39, 10, 20, 190, 190, 20, 35, 651, 1568, 651, 35, 56, 1792, 8344, 8344, 1792, 56, 84, 4242, 33580, 64667, 33580, 4242, 84, 120, 8988, 111100, 361884, 361884, 111100, 8988, 120, 165, 17490, 317680, 1607125, 2713561, 1607125, 317680, 17490, 165
Offset: 2

Views

Author

Andrew Howroyd, Apr 04 2021

Keywords

Comments

The number of vertices is n - k.
Column k is a polynomial of degree 3*k. This is because adding a face can increase the number of vertices whose degree is greater than two by at most two.

Examples

			Triangle begins:
    1;
    4,    4;
   10,   39,     10;
   20,  190,    190,     20;
   35,  651,   1568,    651,     35;
   56, 1792,   8344,   8344,   1792,     56;
   84, 4242,  33580,  64667,  33580,   4242,   84;
  120, 8988, 111100, 361884, 361884, 111100, 8988, 120;
  ...
		

Crossrefs

Columns 1..4 are A000292, A006408, A006409, A006410.
Row sums are A343089.
Cf. A082680 (planar case), A269921 (rooted toroidal maps), A343090, A343092.

Programs

  • PARI
    MQ(n,g,x=1)={ \\ after Quadric in A269921.
      my(Q=matrix(n+1,g+1)); Q[1,1]=x;
      for(n=1, n, for(g=0, min(n\2,g),
         my(t = (1+x)*(2*n-1)/3 * Q[n, 1+g]
           + if(g && n>1, (2*n-3)*(2*n-2)*(2*n-1)/12 * Q[n-1, g])
           + sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Q[k, 1+i] * Q[n-k, 1+g-i]))/2);
         Q[1+n, 1+g] = t * 6/(n+1); ));
      Q
    }
    F(n,m,y,z)={my(Q=MQ(n,m,z)); sum(n=0, n, x^n*Ser(Q[1+n,]/z, y)) + O(x*x^n)}
    H(n,g=1)={my(p=F(n,g,'y,'z), v=Vec(polcoef(subst(p, x, serreverse(x*p^2)), g, 'y))); vector(#v, n, Vecrev(v[n], n))}
    { my(T=H(10)); for(n=1, #T, print(T[n])) }

Formula

T(n,n-k) = T(n,k).

A278881 Triangle where g.f. C = C(x,m) and related series S = S(x,m) and D = D(x,m) satisfy S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C, as read by rows of coefficients T(n,k) of x^(2*n)*m^k in C(x,m) for n>=0, k=0..n.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 8, 3, 0, 1, 20, 30, 4, 0, 1, 40, 147, 80, 5, 0, 1, 70, 504, 672, 175, 6, 0, 1, 112, 1386, 3600, 2310, 336, 7, 0, 1, 168, 3276, 14520, 18150, 6552, 588, 8, 0, 1, 240, 6930, 48048, 102245, 72072, 16170, 960, 9, 0, 1, 330, 13464, 137280, 455455, 546546, 240240, 35904, 1485, 10, 0, 1, 440, 24453, 350064, 1701700, 3179904, 2382380, 700128, 73359, 2200, 11, 0, 1, 572, 42042, 815100, 5542680, 15148224, 17672928, 8868288, 1833975, 140140, 3146, 12, 0
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2016

Keywords

Examples

			This triangle of coefficients of x^(2*n)*m^k in C(x,m) for n>=0, k=0..n, begins:
1;
1, 0;
1, 2, 0;
1, 8, 3, 0;
1, 20, 30, 4, 0;
1, 40, 147, 80, 5, 0;
1, 70, 504, 672, 175, 6, 0;
1, 112, 1386, 3600, 2310, 336, 7, 0;
1, 168, 3276, 14520, 18150, 6552, 588, 8, 0;
1, 240, 6930, 48048, 102245, 72072, 16170, 960, 9, 0;
1, 330, 13464, 137280, 455455, 546546, 240240, 35904, 1485, 10, 0;
1, 440, 24453, 350064, 1701700, 3179904, 2382380, 700128, 73359, 2200, 11, 0;
1, 572, 42042, 815100, 5542680, 15148224, 17672928, 8868288, 1833975, 140140, 3146, 12, 0; ...
Generating function:
C(x,m) = 1 + x^2 + (1 + 2*m)*x^4 + (1 + 8*m + 3*m^2)*x^6 +
(1 + 20*m + 30*m^2 + 4*m^3)*x^8 +
(1 + 40*m + 147*m^2 + 80*m^3 + 5*m^4)*x^10 +
(1 + 70*m + 504*m^2 + 672*m^3 + 175*m^4 + 6*m^5)*x^12 +
(1 + 112*m + 1386*m^2 + 3600*m^3 + 2310*m^4 + 336*m^5 + 7*m^6)*x^14 +
(1 + 168*m + 3276*m^2 + 14520*m^3 + 18150*m^4 + 6552*m^5 + 588*m^6 + 8*m^7)*x^16 +...
where g.f. C = C(x,m) and related series S = S(x,m) and D = D(x,m) satisfy
S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C,
such that
C = C^2 - S^2,
D = D^2 - m*S^2.
The square of the g.f. begins:
C(x,m)^2 = 1 + 2*x^2 + (4*m + 3)*x^4 + (6*m^2 + 20*m + 4)*x^6 +
(8*m^3 + 70*m^2 + 60*m + 5)*x^8 +
(10*m^4 + 180*m^3 + 392*m^2 + 140*m + 6)*x^10 +
(12*m^5 + 385*m^4 + 1680*m^3 + 1512*m^2 + 280*m + 7)*x^12 +
(14*m^6 + 728*m^5 + 5544*m^4 + 9900*m^3 + 4620*m^2 + 504*m + 8)*x^14 +
(16*m^7 + 1260*m^6 + 15288*m^5 + 47190*m^4 + 43560*m^3 + 12012*m^2 + 840*m + 9)*x^16 +
(18*m^8 + 2040*m^7 + 36960*m^6 + 180180*m^5 + 286286*m^4 + 156156*m^3 + 27720*m^2 + 1320*m + 10)*x^18 +...
		

Crossrefs

Cf. A278880 (S(x,m)), A278882 (D(x,m)), A278884 (central terms).
Cf. A001764 (row sums), A000108, A258314 (C(x,m) at m=2), A243863.

Programs

  • PARI
    {T(n,k) = my(S=x,C=1,D=1); for(i=0,2*n, S = x*C*D + O(x^(2*n+2)); C = 1 + x*S*D; D = 1 + m*x*S*C;); polcoeff(polcoeff(C,2*n,x),k,m)}
    for(n=0,15, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    /* Explicit formula for T(n, k) */
    {T(n,k) = if(k==0,1, if(n==k,0, (n+k)!*(2*n-k-1)!/(k!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!) ))}
    for(n=0, 15, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Dec 11 2016

Formula

G.f. C = C(x,m), and related functions S = S(x,m) and D = D(x,m) satisfy:
(1.a) S = x*C*D.
(1.b) C = 1 + x*S*D.
(1.c) D = 1 + m*x*S*C.
...
(2.a) C = C^2 - S^2.
(2.b) D = D^2 - m*S^2.
(2.c) C = (1 + sqrt(1 + 4*S^2))/2.
(2.d) D = (1 + sqrt(1 + 4*m*S^2))/2.
...
(3.a) S = x*(1 + x*S)*(1 + m*x*S) / (1 - m*x^2*S^2)^2.
(3.b) C = (1 + x*S) / (1 - m*x^2*S^2).
(3.c) D = (1 + m*x*S) / (1 - m*x^2*S^2).
(3.d) S = x/((1 - x^2*D^2)*(1 - m*x^2*C^2)).
(3.e) C = 1/(1 - x^2*D^2).
(3.f) D = 1/(1 - m*x^2*C^2).
...
(4.a) x = m^2*x^4*S^5 - 2*m*x^2*S^3 - m*x^3*S^2 + (1 - (m+1)*x^2)*S.
(4.b) 0 = 1 - (1-x^2)*C - 2*m*x^2*C^2 + 2*m*x^2*C^3 + m^2*x^4*C^4 - m^2*x^4*C^5.
(4.c) 0 = 1 - (1-m*x^2)*D - 2*x^2*D^2 + 2*x^2*D^3 + x^4*D^4 - x^4*D^5.
...
(5.a) S(x,m) = Series_Reversion( x*G(-x^2)*G(-m*x^2) ), where G(x) = 1 + x*G(x)^2 is the g.f. of the Catalan numbers (A000108).
Logarithmic derivatives.
(6.a) C'/C = 2*S*S' / (C^2 + S^2).
(6.b) D'/D = 2*m*S*S' / (D^2 + m*S^2).
...
T(n,k) = (k+1) * A082680(n+1,k+1) for n>=0 with T(0,0) = 1 and T(n,n) = 1 for n>0. - Paul D. Hanna, Dec 11 2016
T(n,k) = (n+k)!*(2*n-k-1)!/(k!*(n-k)!*(2*k+1)!*(2*n-2*k-1)!) for n>k>0 with T(n,0) = 1 and T(n,n) = 0 for n>0. - Paul D. Hanna, Dec 11 2016
Row sums yield A001764(n) = binomial(3*n,n)/(2*n+1).
Central terms: T(2*n,n) = binomial(3*n-1,n) * binomial(3*n,n)/(2*n+1).
Sum_{k=0..n} 2^k * T(n,k) = A258314(n-1) for n>=0.
Sum_{k=0..n} (-1)^k * T(n,k) = A243863(n) for n>=0.

A278882 Triangle where g.f. D = D(x,m) and related series S = S(x,m) and C = C(x,m) satisfy S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C, as read by rows of coefficients T(n,k) of x^(2*n)*m^k in C(x,m) for n>=1, k=0..n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 8, 1, 0, 4, 30, 20, 1, 0, 5, 80, 147, 40, 1, 0, 6, 175, 672, 504, 70, 1, 0, 7, 336, 2310, 3600, 1386, 112, 1, 0, 8, 588, 6552, 18150, 14520, 3276, 168, 1, 0, 9, 960, 16170, 72072, 102245, 48048, 6930, 240, 1, 0, 10, 1485, 35904, 240240, 546546, 455455, 137280, 13464, 330, 1, 0, 11, 2200, 73359, 700128, 2382380, 3179904, 1701700, 350064, 24453, 440, 1, 0, 12, 3146, 140140, 1833975, 8868288, 17672928, 15148224, 5542680, 815100, 42042, 572, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 29 2016

Keywords

Examples

			This triangle of coefficients of x^(2*n)*m^k in D(x,m) for n>=0, k=0..n, begins:
1;
0, 1;
0, 2, 1;
0, 3, 8, 1;
0, 4, 30, 20, 1;
0, 5, 80, 147, 40, 1;
0, 6, 175, 672, 504, 70, 1;
0, 7, 336, 2310, 3600, 1386, 112, 1;
0, 8, 588, 6552, 18150, 14520, 3276, 168, 1;
0, 9, 960, 16170, 72072, 102245, 48048, 6930, 240, 1;
0, 10, 1485, 35904, 240240, 546546, 455455, 137280, 13464, 330, 1;
0, 11, 2200, 73359, 700128, 2382380, 3179904, 1701700, 350064, 24453, 440, 1;
0, 12, 3146, 140140, 1833975, 8868288, 17672928, 15148224, 5542680, 815100, 42042, 572, 1; ...
Generating function:
D(x,m) = 1 + m*x^2 + (2*m + m^2)*x^4 + (3*m + 8*m^2 + m^3)*x^6 +
(4*m + 30*m^2 + 20*m^3 + m^4)*x^8 +
(5*m + 80*m^2 + 147*m^3 + 40*m^4 + m^5)*x^10 +
(6*m + 175*m^2 + 672*m^3 + 504*m^4 + 70*m^5 + m^6)*x^12 +
(7*m + 336*m^2 + 2310*m^3 + 3600*m^4 + 1386*m^5 + 112*m^6 + m^7)*x^14 +
(8*m + 588*m^2 + 6552*m^3 + 18150*m^4 + 14520*m^5 + 3276*m^6 + 168*m^7 + m^8)*x^16 +...
where g.f. D = D(x,m) and related series S = S(x,m) and C = C(x,m) satisfy
S = x*C*D, C = 1 + x*S*D, and D = 1 + m*x*S*C,
such that
C = C^2 - S^2,
D = D^2 - m*S^2.
The square of the g.f. begins:
D(x,m)^2 = 1 + 2*m*x^2 + (3*m^2 + 4*m)*x^4 +
(4*m^3 + 20*m^2 + 6*m)*x^6 +
(5*m^4 + 60*m^3 + 70*m^2 + 8*m)*x^8 +
(6*m^5 + 140*m^4 + 392*m^3 + 180*m^2 + 10*m)*x^10 +
(7*m^6 + 280*m^5 + 1512*m^4 + 1680*m^3 + 385*m^2 + 12*m)*x^12 +
(8*m^7 + 504*m^6 + 4620*m^5 + 9900*m^4 + 5544*m^3 + 728*m^2 + 14*m)*x^14 +
(9*m^8 + 840*m^7 + 12012*m^6 + 43560*m^5 + 47190*m^4 + 15288*m^3 + 1260*m^2 + 16*m)*x^16 +
(10*m^9 + 1320*m^8 + 27720*m^7 + 156156*m^6 + 286286*m^5 + 180180*m^4 + 36960*m^3 + 2040*m^2 + 18*m)*x^18 +...
		

Crossrefs

Cf. A278880 (S(x,m)), A278881 (C(x,m)), A278884 (central terms).
Cf. A001764 (row sums), A000108, A258315, A243863.

Programs

  • PARI
    {T(n,k) = my(S=x,C=1,D=1); for(i=0,2*n, S = x*C*D + O(x^(2*n+2)); C = 1 + x*S*D; D = 1 + m*x*S*C;); polcoeff(polcoeff(D,2*n,x),k,m)}
    for(n=0,15, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    /* Explicit formula for T(n, k) */
    {T(n, k) = if(n==k, 1, if(k==0, 0, (2*n-k)!*(n+k-1)!/(k!*(n-k)!*(2*k-1)!*(2*n-2*k+1)!) ))}
    for(n=0, 15, for(k=0, n, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Dec 11 2016

Formula

G.f. D = D(x,m), and related functions S = S(x,m) and C = C(x,m) satisfy:
(1.a) S = x*C*D.
(1.b) C = 1 + x*S*D.
(1.c) D = 1 + m*x*S*C.
...
(2.a) C = C^2 - S^2.
(2.b) D = D^2 - m*S^2.
(2.c) C = (1 + sqrt(1 + 4*S^2))/2.
(2.d) D = (1 + sqrt(1 + 4*m*S^2))/2.
...
(3.a) S = x*(1 + x*S)*(1 + m*x*S) / (1 - m*x^2*S^2)^2.
(3.b) C = (1 + x*S) / (1 - m*x^2*S^2).
(3.c) D = (1 + m*x*S) / (1 - m*x^2*S^2).
(3.d) S = x/((1 - x^2*D^2)*(1 - m*x^2*C^2)).
(3.e) C = 1/(1 - x^2*D^2).
(3.f) D = 1/(1 - m*x^2*C^2).
...
(4.a) x = m^2*x^4*S^5 - 2*m*x^2*S^3 - m*x^3*S^2 + (1 - (m+1)*x^2)*S.
(4.b) 0 = 1 - (1-x^2)*C - 2*m*x^2*C^2 + 2*m*x^2*C^3 + m^2*x^4*C^4 - m^2*x^4*C^5.
(4.c) 0 = 1 - (1-m*x^2)*D - 2*x^2*D^2 + 2*x^2*D^3 + x^4*D^4 - x^4*D^5.
...
(5.a) S(x,m) = Series_Reversion( x*G(-x^2)*G(-m*x^2) ), where G(x) = 1 + x*G(x)^2 is the g.f. of the Catalan numbers (A000108).
Logarithmic derivatives.
(6.a) C'/C = 2*S*S' / (C^2 + S^2).
(6.b) D'/D = 2*m*S*S' / (D^2 + m*S^2).
...
T(n,k) = (n-k+1) * A082680(n+1,n-k+1) for n>=0 with T(0,0) = 1 and T(n,0) = 0 for n>0. - Paul D. Hanna, Dec 11 2016
T(n,k) = (2*n-k)!*(n+k-1)!/(k!*(n-k)!*(2*k-1)!*(2*n-2*k+1)!) for n>k>0 with T(n,0) = 1 and T(n,n) = 0 for n>0. - Paul D. Hanna, Dec 11 2016
Row sums yield A001764(n) = binomial(3*n,n)/(2*n+1).
Central terms: T(2*n,n) = binomial(3*n-1,n) * binomial(3*n,n)/(2*n+1).
Sum_{k=0..n} 2^k * T(n,k) = A258315(n-1) for n>=0.
Sum_{k=0..n} (-1)^k * T(n,k) = (-1)^n * A243863(n) for n>=0.

A342061 Triangle read by rows: T(n,k) is the number of sensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 8, 3, 1, 1, 4, 16, 16, 4, 1, 1, 5, 38, 63, 38, 5, 1, 1, 7, 72, 218, 218, 72, 7, 1, 1, 8, 134, 622, 1075, 622, 134, 8, 1, 1, 10, 224, 1600, 4214, 4214, 1600, 224, 10, 1, 1, 12, 375, 3703, 14381, 22222, 14381, 3703, 375, 12, 1
Offset: 2

Views

Author

Andrew Howroyd, Mar 30 2021

Keywords

Comments

The number of faces is n + 2 - k.

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1,   1;
  1, 2,   2,   1;
  1, 3,   8,   3,    1;
  1, 4,  16,  16,    4,   1;
  1, 5,  38,  63,   38,   5,   1;
  1, 7,  72, 218,  218,  72,   7, 1;
  1, 8, 134, 622, 1075, 622, 134, 8, 1;
  ...
		

Crossrefs

Column k=3 is A001399(n-3).
Row sums are A006402.
Cf. A082680 (rooted), A239893, A342059.

Programs

  • PARI
    \\ See section 4 of Walsh reference.
    T(n)={
      my(B=matrix(n, n, i, j, if(i+j <= n+1, (2*i+j-2)!*(2*j+i-2)!/(i!*j!*(2*i-1)!*(2*j-1)!))));
      my(C(i,j)=((i+j-1)*(i+1)*(j+1)/(2*(2*i+j-1)*(2*j+i-1)))*B[(i+1)/2,(j+1)/2]);
      my(D(i,j)=((j+1)/2)*B[i/2, (j+1)/2]);
      my(E(i,j)=((i-1)*(j-1) + 2*(i+j)*(i+j-1))*B[i,j]);
      my(F(i,j)=if(!i, j==1, ((i+j)*(6*j+2*i-5)*j*(2*i+j-1)/(2*(2*i+1)*(2*j+i-2)))*B[i,j]) + if(j-1, binomial(i+2,2)*B[i+1,j-1]));
      vector(n, n, vector(n, i, my(j=n+1-i); B[i,j]
        + (i+j)*if(i%2, if(j%2, C(i,j), D(j,i)), if(j%2, D(i,j)))
        + sumdiv(i+j, d, if(d>1, eulerphi(d)*( if(i%d==0, E(i/d, j/d) ) + if(i%d==1, F((i-1)/d, (j+1)/d)) + if(j%d==1, F((j-1)/d, (i+1)/d)) )))
       )/(2*n+2));
    }
    { my(A=T(10)); for(n=1, #A, print(A[n])) }

Formula

T(n,k) = T(n, n+2-k).

A379432 Triangle read by rows: T(n,k) is the number of unsensed 2-connected (nonseparable) planar maps with n edges and k vertices, n >= 2, 2 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 7, 3, 1, 1, 4, 13, 13, 4, 1, 1, 5, 29, 44, 29, 5, 1, 1, 7, 51, 139, 139, 51, 7, 1, 1, 8, 92, 370, 623, 370, 92, 8, 1, 1, 10, 147, 913, 2307, 2307, 913, 147, 10, 1, 1, 12, 240, 2048, 7644, 11673, 7644, 2048, 240, 12, 1, 1, 14, 357, 4295, 22344, 50174, 50174, 22344, 4295, 357, 14, 1
Offset: 2

Views

Author

Andrew Howroyd, Jan 14 2025

Keywords

Comments

The maps considered here may include parallel edges.
The number of faces is n + 2 - k.

Examples

			Triangle begins:
   1;
   1,  1;
   1,  1,   1;
   1,  2,   2,   1;
   1,  3,   7,   3,    1;
   1,  4,  13,  13,    4,    1;
   1,  5,  29,  44,   29,    5,   1;
   1,  7,  51, 139,  139,   51,   7,   1;
   1,  8,  92, 370,  623,  370,  92,   8,  1;
   1, 10, 147, 913, 2307, 2307, 913, 147, 10, 1;
   ...
		

Crossrefs

Row sums are A006403.
Cf. A082680 (rooted), A342061 (sensed), A212438 (3-connected), A277741, A342060.

Formula

T(n,k) = T(n, n+2-k).
Showing 1-8 of 8 results.