cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034268 a(n) = LCM_{k=1..n} (2^k - 1).

Original entry on oeis.org

1, 3, 21, 105, 3255, 9765, 1240155, 21082635, 1539032355, 16929355905, 34654391537535, 450507089987955, 3690103574091339405, 158674453685927594415, 23959842506575066756665, 6157679524189792156462905, 807093212915080247739749421255
Offset: 1

Views

Author

Jeffrey Shallit, Apr 20 2000

Keywords

Examples

			a(3) = lcm(1,3,7) = 21.
		

Crossrefs

Programs

  • Magma
    [Lcm([2^k-1:k in [1..n]]): n in [1..17]]; // Marius A. Burtea, Jan 29 2020
    
  • Maple
    a:= proc(n) option remember; `if`(n=1, 1, ilcm(a(n-1), 2^n-1)) end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Oct 16 2011
  • Mathematica
    Table[LCM @@ (2^Range[n] - 1), {n, 1, 20}] (* Jean-François Alcover, Apr 02 2015 *)
  • PARI
    A034268(n) = {local(r);r=1;for(k=1,n,r=lcm(r,2^k-1));r} \\ Michael B. Porter, Mar 02 2010
    
  • PARI
    a(n) = lcm(vector(n, k, 2^k-1)); \\ Michel Marcus, Jul 29 2022
    
  • Python
    from math import lcm
    from itertools import accumulate
    def aupto(n): return list(accumulate((2**k-1 for k in range(1, n+1)), lcm))
    print(aupto(17)) # Michael S. Branicky, Jul 04 2022

Formula

a(n) = lcm(1, 3, 7, ..., 2^n - 1).
a(n) = Product_{k=1..n} Phi_k(2), where Phi_n(2) is n-th cyclotomic polynomial at x=2 (cf. A019320). - Vladeta Jovovic, Jan 20 2002