cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A019320 Cyclotomic polynomials at x=2.

Original entry on oeis.org

2, 1, 3, 7, 5, 31, 3, 127, 17, 73, 11, 2047, 13, 8191, 43, 151, 257, 131071, 57, 524287, 205, 2359, 683, 8388607, 241, 1082401, 2731, 262657, 3277, 536870911, 331, 2147483647, 65537, 599479, 43691, 8727391, 4033, 137438953471, 174763, 9588151, 61681
Offset: 0

Views

Author

Keywords

Crossrefs

a(n) = A063696(n) - A063698(n) for up to n=104.
Same sequence in binary: A063672.

Programs

  • Maple
    with(numtheory,cyclotomic); f := n->subs(x=2,cyclotomic(n,x)); seq(f(i),i=0..64);
  • Mathematica
    Join[{2}, Table[Cyclotomic[n, 2], {n, 1, 40}]] (* Jean-François Alcover, Jun 14 2013 *)
  • PARI
    vector(20,n,polcyclo(n,2)) \\ Charles R Greathouse IV, May 18 2011

Formula

(lcm_{k=1..n} (2^k - 1))/lcm_{k=1..n-1} (2^k - 1), n > 1. - Vladeta Jovovic, Jan 20 2002
Let b(1) = 1 and b(n+1) = lcm(b(n), 2^n-1) then Phi(n,2) = b(n+1)/b(n) = a(n). - Thomas Ordowski, May 08 2013
a(0) = 2; for n > 0, a(n) = (2^n-1)/gcd(a(0)*a(1)*...*a(n-1), 2^n-1). - Thomas Ordowski, May 11 2013

A066845 a(n) = (lcm_{k=0..n} (2^k + 1))/(lcm_{k=0..n-1} (2^k + 1)).

Original entry on oeis.org

3, 5, 3, 17, 11, 13, 43, 257, 57, 205, 683, 241, 2731, 3277, 331, 65537, 43691, 4033, 174763, 61681, 5419, 838861, 2796203, 65281, 1016801, 13421773, 261633, 15790321, 178956971, 80581, 715827883, 4294967297, 1397419, 3435973837
Offset: 1

Views

Author

Vladeta Jovovic, Jan 20 2002

Keywords

Comments

The primitive part of 2^n + 1. Bisection of A019320. - T. D. Noe, Jul 24 2008

Crossrefs

Programs

Formula

a(n) = cyclotomic(2*n, 2). - Vladeta Jovovic, Apr 05 2004

A051844 a(n) = LCM_{k=0..n} (2^k + 1).

Original entry on oeis.org

2, 6, 30, 90, 1530, 16830, 218790, 9407970, 2417848290, 137817352530, 28252557268650, 19296496614487950, 4650455684091595950, 12700394473254148539450, 41619192688853844763777650, 13775952780010622616810402150, 902834617343556174437903325704550
Offset: 0

Views

Author

Jeffrey Shallit, Apr 20 2000

Keywords

Examples

			a(3) = lcm(2, 3, 5) = 30.
		

Crossrefs

Cf. A034268.
Cf. A019320.

Programs

  • Mathematica
    Module[{nn=20,c},c=Table[2^n+1,{n,0,nn}];Table[LCM@@Take[c,n],{n,nn}]] (* Harvey P. Dale, Aug 04 2017 *)
  • PARI
    a(n) = {ret = 1; for (k=0, n, ret = lcm(ret, 2^k+1)); return(ret);} \\ Michel Marcus, May 24 2013
    
  • Python
    from math import lcm
    from itertools import accumulate
    def aupton(nn): return list(accumulate((2**k+1 for k in range(nn+1)), lcm))
    print(aupton(16)) # Michael S. Branicky, Jul 04 2022

Formula

a(n) = lcm(2, 3, 5, ..., 2^n + 1).
Product_{k=1..n} cyclotomic(2*k-2, 2). - Vladeta Jovovic, Apr 05 2004

Extensions

More terms from Harvey P. Dale, Aug 04 2017

A211171 Exponent of general linear group GL(n,2).

Original entry on oeis.org

1, 6, 84, 420, 26040, 78120, 9921240, 168661080, 24624517680, 270869694480, 554470264600560, 7208113439807280, 59041657185461430480, 2538791258974841510640, 383357480105201068106640, 98522872387036674503406480, 25826982813282567927671981480160
Offset: 1

Views

Author

Alexander Gruber, Jan 31 2013

Keywords

Comments

a(n) is the smallest integer for which x^a(n) = 1 for any x in GL(n,2).

Examples

			n = 2: GL(2,2) is isomorphic to S3 which has exponent 6 (see: A003418).
n = 3: The set of element orders of GL(3,2) is {1,2,3,4,7} so the exponent is 84.
n = 5: The set of element orders of GL(5,2) is {1,2,3,4,5, 6,7,8,12,14, 15,21,31} so the exponent is 26040 (see: A053651).
		

Crossrefs

Cf. A006951 (number of conjugacy classes in GL(n,2)).

Programs

  • Magma
    for n in [1..18] do
    Exponent(GL(n,2));
    end for;
    
  • Maple
    with(numtheory):
    a:= proc(n) local t; t:= 2^ilog2(n);
          `if`(tAlois P. Heinz, Feb 04 2013
  • Mathematica
    f[q_, n_] := With[{p = Sort[Divisors[q]][[2]]},
      p^Ceiling[Log[p, n]] Product[Cyclotomic[k, q], {k, n}]]; f[2,#]&/@Range[100]
  • PARI
    a(n) = 2^ceil(log(n)/log(2))*prod(k=1, n, polcyclo(k, 2)); \\ Michel Marcus, Jan 29 2020

Formula

a(n) = 2^ceiling(log_2(n)) * Product_{k=1..n} (k-th cyclotomic polynomial evaluated at 2).
a(n) = A034268(n)*A062383(n+1). - Michel Marcus, Jul 29 2022
Showing 1-4 of 4 results.