cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A034268 a(n) = LCM_{k=1..n} (2^k - 1).

Original entry on oeis.org

1, 3, 21, 105, 3255, 9765, 1240155, 21082635, 1539032355, 16929355905, 34654391537535, 450507089987955, 3690103574091339405, 158674453685927594415, 23959842506575066756665, 6157679524189792156462905, 807093212915080247739749421255
Offset: 1

Views

Author

Jeffrey Shallit, Apr 20 2000

Keywords

Examples

			a(3) = lcm(1,3,7) = 21.
		

Crossrefs

Programs

  • Magma
    [Lcm([2^k-1:k in [1..n]]): n in [1..17]]; // Marius A. Burtea, Jan 29 2020
    
  • Maple
    a:= proc(n) option remember; `if`(n=1, 1, ilcm(a(n-1), 2^n-1)) end:
    seq(a(n), n=1..20);  # Alois P. Heinz, Oct 16 2011
  • Mathematica
    Table[LCM @@ (2^Range[n] - 1), {n, 1, 20}] (* Jean-François Alcover, Apr 02 2015 *)
  • PARI
    A034268(n) = {local(r);r=1;for(k=1,n,r=lcm(r,2^k-1));r} \\ Michael B. Porter, Mar 02 2010
    
  • PARI
    a(n) = lcm(vector(n, k, 2^k-1)); \\ Michel Marcus, Jul 29 2022
    
  • Python
    from math import lcm
    from itertools import accumulate
    def aupto(n): return list(accumulate((2**k-1 for k in range(1, n+1)), lcm))
    print(aupto(17)) # Michael S. Branicky, Jul 04 2022

Formula

a(n) = lcm(1, 3, 7, ..., 2^n - 1).
a(n) = Product_{k=1..n} Phi_k(2), where Phi_n(2) is n-th cyclotomic polynomial at x=2 (cf. A019320). - Vladeta Jovovic, Jan 20 2002

A066845 a(n) = (lcm_{k=0..n} (2^k + 1))/(lcm_{k=0..n-1} (2^k + 1)).

Original entry on oeis.org

3, 5, 3, 17, 11, 13, 43, 257, 57, 205, 683, 241, 2731, 3277, 331, 65537, 43691, 4033, 174763, 61681, 5419, 838861, 2796203, 65281, 1016801, 13421773, 261633, 15790321, 178956971, 80581, 715827883, 4294967297, 1397419, 3435973837
Offset: 1

Views

Author

Vladeta Jovovic, Jan 20 2002

Keywords

Comments

The primitive part of 2^n + 1. Bisection of A019320. - T. D. Noe, Jul 24 2008

Crossrefs

Programs

Formula

a(n) = cyclotomic(2*n, 2). - Vladeta Jovovic, Apr 05 2004
Showing 1-2 of 2 results.