cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034296 Number of flat partitions of n: partitions {a_i} with each |a_i - a_{i-1}| <= 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 18, 23, 26, 31, 39, 44, 52, 63, 72, 85, 101, 115, 134, 158, 181, 208, 243, 277, 318, 369, 418, 478, 549, 622, 710, 809, 914, 1036, 1177, 1328, 1498, 1695, 1904, 2143, 2416, 2706, 3036, 3408, 3811, 4264, 4769, 5319, 5934, 6621
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n such that all parts, with the possible exception of the largest, appear only once. Example: a(6)=7 because we have [6], [5,1], [4,2], [3,3], [3,2,1], [2,2,2] and [1,1,1,1,1,1] ([4,1,1], [3,1,1,1], [2,2,1,1], [2,1,1,1,1,1] do not qualify). - Emeric Deutsch and Vladeta Jovovic, Feb 23 2006
Also the number of partitions p of n such that d(p) > max(p) - min(p), where d is the number of distinct parts of p; indeed that inequality occurs only when d(p) = 1+ max(p) - min(p), so p satisfies a(i) - a(i-1) = 1 for all parts, ordered as a(i) >= a(i-1) > ... > a(k). - Clark Kimberling, Apr 18 2014
Flat partitions are also called gap-free partitions. See, for example, the Grabner et al. reference. - Emeric Deutsch, Sep 22 2016
Conjecture: Also the sum of the smallest parts in the distinct partitions of n with an odd number of parts. - George Beck, May 06 2017
Above conjecture was proved by Shane Chern, see link. - George Beck, Aug 12 2017
Note that Andrews [2016] uses a(0) = 1. - Michael Somos, Aug 07 2017
Also called number of compact partitions of n where a compact partition is one where every integer between the largest and smallest parts of it also appears as a part. [Andrews 2016] - Michael Somos, Aug 13 2017

Examples

			From _Joerg Arndt_, Dec 27 2012: (Start)
The a(11)=18 flat partitions of 11 are (in lexicographic order)
[ 1]  [ 1 1 1 1 1 1 1 1 1 1 1 ]
[ 2]  [ 2 1 1 1 1 1 1 1 1 1 ]
[ 3]  [ 2 2 1 1 1 1 1 1 1 ]
[ 4]  [ 2 2 2 1 1 1 1 1 ]
[ 5]  [ 2 2 2 2 1 1 1 ]
[ 6]  [ 2 2 2 2 2 1 ]
[ 7]  [ 3 2 1 1 1 1 1 1 ]
[ 8]  [ 3 2 2 1 1 1 1 ]
[ 9]  [ 3 2 2 2 1 1 ]
[10]  [ 3 2 2 2 2 ]
[11]  [ 3 3 2 1 1 1 ]
[12]  [ 3 3 2 2 1 ]
[13]  [ 3 3 3 2 ]
[14]  [ 4 3 2 1 1 ]
[15]  [ 4 3 2 2 ]
[16]  [ 4 4 3 ]
[17]  [ 6 5 ]
[18]  [ 11 ]
The a(11)=18 partitions of 11 where no part (except possibly the largest) is repeated are
[ 1]  [ 1 1 1 1 1 1 1 1 1 1 1 ]
[ 2]  [ 2 2 2 2 2 1 ]
[ 3]  [ 3 3 3 2 ]
[ 4]  [ 4 4 2 1 ]
[ 5]  [ 4 4 3 ]
[ 6]  [ 5 3 2 1 ]
[ 7]  [ 5 4 2 ]
[ 8]  [ 5 5 1 ]
[ 9]  [ 6 3 2 ]
[10]  [ 6 4 1 ]
[11]  [ 6 5 ]
[12]  [ 7 3 1 ]
[13]  [ 7 4 ]
[14]  [ 8 2 1 ]
[15]  [ 8 3 ]
[16]  [ 9 2 ]
[17]  [ 10 1 ]
[18]  [ 11 ]
(End)
		

Crossrefs

Sequences "number of partitions with max diff d": A000005 (d=0, for n>=1), this sequence (d=1), A224956 (d=2), A238863 (d=3), A238864 (d=4), A238865 (d=5), A238866 (d=6), A238867 (d=7), A238868 (d=8), A238869 (d=9), A000041 (d --> infinity).

Programs

  • Maple
    g:= 1+sum(x^j*product(1+x^i, i=1..j-1)/(1-x^j), j=1..60): gser:=series(g, x=0, 55): seq(coeff(gser, x, n), n=0..50); # Emeric Deutsch, Feb 23 2006
    # second Maple program:
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1), j=1..n/i)))
        end:
    a:= n-> add(b(n, k), k=0..n):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jul 06 2012
  • Mathematica
    nn=54;Drop[CoefficientList[Series[Sum[x^i/(1-x^i)Product[1+x^j,{j,1,i-1}],{i,1,nn}],{x,0,nn}],x],1] (* Geoffrey Critzer, Sep 28 2013 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[b[n-i*j, i-1], {j, 1, n/i}]]]; a[n_] := Sum[b[n, k], {k, 1, n}]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
    a[ n_] := SeriesCoefficient[ Sum[ x^k / (1 - x^k) QPochhammer[ -x, x, k - 1] // FunctionExpand, {k, n}], {x, 0, n}]; (* Michael Somos, Aug 07 2017 *)
  • PARI
    N = 66;  x = 'x + O('x^N);
    gf = sum(n=1,N, x^n/(1-x^n) * prod(k=1,n-1,1+x^k) );
    v = Vec(gf)
    /* Joerg Arndt, Apr 21 2013 */
    
  • PARI
    {a(n) = my(t); if( n<1, 0, polcoeff(sum(k=1, n, (t *= 1 + x^k) * x^k / (1 - x^(2*k)), t = 1 + x * O(x^n)), n))}; /* Michael Somos, Aug 07 2017 */
    
  • PARI
    {a(n) = my(c); forpart(p=n, c++; for(i=1, #p-1, if( p[i+1] > p[i] + 1, c--; break))); c}; /* Michael Somos, Aug 13 2017 */
    
  • Python
    from sympy.core.cache import cacheit
    @cacheit
    def b(n, i): return 1 if n==0 else 0 if i<1 else sum(b(n - i*j, i - 1) for j in range(1, n//i + 1))
    def a(n): return sum(b(n, k) for k in range(n + 1))
    print([a(n) for n in range(71)]) # Indranil Ghosh, Aug 14 2017, after Maple code by Alois P. Heinz

Formula

G.f.: x/(1-x) + x^2/(1-x^2)*(1+x) + x^3/(1-x^3)*(1+x)*(1+x^2) + x^4/(1-x^4)*(1+x)*(1+x^2)*(1+x^3) + x^5/(1-x^5)*(1+x)*(1+x^2)*(1+x^3)*(1+x^4) + ... . - Emeric Deutsch and Vladeta Jovovic, Feb 22 2006
a(n) = Sum_{k=0..1} A238353(n,k). - Alois P. Heinz, Mar 09 2014
a(n) ~ exp(Pi*sqrt(n/3)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, May 24 2018

Extensions

More terms from Emeric Deutsch, Feb 23 2006
a(0)=1 prepended by Alois P. Heinz, Aug 14 2017