cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034299 Alternating sum transform (PSumSIGN) of A000975.

Original entry on oeis.org

1, 1, 4, 6, 15, 27, 58, 112, 229, 453, 912, 1818, 3643, 7279, 14566, 29124, 58257, 116505, 233020, 466030, 932071, 1864131, 3728274, 7456536, 14913085, 29826157, 59652328, 119304642, 238609299
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 1 + x + 4*x^2 + 6*x^3 + 15*x^4 + 27*x^5 + 58*x^6 + 112*x^7 + ...
		

Crossrefs

Cf. A160156.

Programs

  • Magma
    [(2^(n+5)+(6*n+13)*(-1)^n-9)/36: n in [0..50]]; // G. C. Greubel, Oct 12 2017
  • Mathematica
    CoefficientList[Series[(1/(1-x^2))/(1-x-2x^2),{x,0,40}],x] (* Vincenzo Librandi, Apr 04 2012 *)
    Table[(2^(n + 5) + (6 n + 13) (-1)^n - 9)/36, {n, 0, 28}] (* Bruno Berselli, Apr 04 2012 *)
    LinearRecurrence[{1,3,-1,-2},{1,1,4,6},30] (* Harvey P. Dale, Jun 11 2019 *)
  • PARI
    {a(n) = (32 * 2^n - 9 + (6*n + 13) * (-1)^n) / 36}; /* Michael Somos, Jan 23 2014 */
    

Formula

a(n) = sum{k=0..floor(n/2), A001045(n-2k+1)}. - Paul Barry, Nov 24 2003
G.f.: (1/(1-x^2))/(1-x-2x^2); a(n) = sum{k=0..n+1, A001045(k)*(1-(-1)^floor((n+k)/2))}; - Paul Barry, Apr 16 2005
a(n) = sum_{k, 0<=k<=n} A126258(n,k). - Philippe Deléham, Mar 13 2007
a(n) = 2*a(n-1)+A001057(n+1), with a(0)=1. - Bruno Berselli, Nov 09 2010
a(n) = (2^(n+5)+(6n+13)(-1)^n-9)/36. - Bruno Berselli, Apr 04 2012
a(n) = a(n-1) + 2*a(n-2) + (1 + (-1)^n) / 2. - Michael Somos, Jan 23 2014
A160156(n) = a(2*n). - Michael Somos, Oct 16 2020