A034380 Ratio of totient to Carmichael's lambda function: a(n) = A000010(n) / A002322(n).
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 4, 1, 2, 1, 2, 2, 1, 1, 4, 1, 1, 2, 2, 1, 1, 2, 4, 2, 1, 1, 4, 1, 1, 6, 2, 4, 2, 1, 2, 2, 2, 1, 4, 1, 1, 2, 2, 2, 2, 1, 8, 1, 1, 1, 4, 4, 1, 2, 4, 1, 2, 6, 2, 2, 1, 2, 4, 1, 1, 2, 2, 1, 2, 1, 4, 4
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- W. D. Banks and F. Luca, On integers with a special divisibility property, Archivum Mathematicum (BRNO) 42 (2006) pp 31-42.
Programs
-
Haskell
a034380 n = a000010 n `div` a002322 n -- Reinhard Zumkeller, Sep 02 2014
-
Magma
[1] cat [EulerPhi(n) div CarmichaelLambda(n): n in [2..100]]; // Vincenzo Librandi, Jul 18 2017
-
Maple
A034380 := n-> phi(n) / lambda(n);
-
Mathematica
Table[EulerPhi[n]/CarmichaelLambda[n], {n, 1, 200}] (* Geoffrey Critzer, Dec 23 2014 *)
-
PARI
eulerphi(n)/lcm(znstar(n)[2]) \\ Charles R Greathouse IV, Feb 01 2013
Formula
a(A033948(n)) = 1 [Banks & Luca]. - R. J. Mathar, Jul 29 2007
Comments