cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034430 Convolution of A001147 (double factorial numbers) with itself.

Original entry on oeis.org

1, 2, 7, 36, 249, 2190, 23535, 299880, 4426065, 74294010, 1397669175, 29123671500, 665718201225, 16560190196550, 445300709428575, 12869793995058000, 397815487883438625, 13095523164781307250, 457362512442763302375, 16890682269050394304500
Offset: 0

Views

Author

Jim FitzSimons (cherry(AT)neta.com)

Keywords

Comments

Old name was "Expand arctan(sqrt(x)*sqrt(x+2))/(sqrt(x)*sqrt(x+2)) and multiply n-th term by 1.3.5...(2n+1)".

Crossrefs

Programs

  • Maple
    A034430 := proc(n) option remember; if n=0 then 1 elif n=1 then 2 else
    (3*n-1)*A034430(n-1)-(1+2*n^2-3*n)*A034430(n-2) fi end: seq(A034430(n),n=0..19); # Peter Luschny, Dec 14 2013
  • Mathematica
    Range[0, 19]! * CoefficientList[Series[1/(1 - x)/Sqrt[1 - 2*x], {x, 0, 19}], x] (* David Scambler, May 24 2012 *)

Formula

E.g.f.: 1/(1-x)/sqrt(1-2*x). - Vladeta Jovovic, May 11 2003
a(n) = Integral_{x=-infinity..infinity} x^(2*n+1)*exp(-x^2)*erfi(x/sqrt(2)), with erfi the imaginary error function. - Groux Roland, Mar 26 2011
E.g.f.: d/dx(F(x)^(-1)) where (-1) denotes the compositional inverse and F(x) = sin(x)/(1+sin(x)) = x - 2*x^2/2! + 5*x^3/3! - 16*x^4/4! + .... See A000111. - Peter Bala, Jun 24 2012
E.g.f.: E(x) = 1/sqrt(1-2*x)/(1-x) = (1 + x/(U(0)-x))/(1-x), where U(k) = (2*k+1)*x + (k+1) - (k+1)*(2*k+3)*x/U(k+1); (continued fraction Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jun 27 2012
G.f.: hypergeom([1,1/2],[],2*x)^2. - Mark van Hoeij, May 16 2013
a(n-1)*n = A233481(n) for n >= 1. - Peter Luschny, Dec 14 2013
D-finite with recurrence: a(n) = (3*n-1)*a(n-1)-(2*n-1)*(n-1)*a(n-2) for n >= 2. - Peter Luschny, Dec 14 2013
a(n) ~ 2^(n+3/2) * n^n / exp(n). - Vaclav Kotesovec, Dec 20 2013
a(n) = 2*Pochhammer(1/2, n+1)*hyper2F1([1/2, -n], [3/2], -1). - Peter Luschny, Aug 02 2014
a(n) = -(2*n+1)!! * 2^(-n-1) * Im(Beta(2, n+1, 1/2)). - Vladimir Reshetnikov, Apr 23 2016
Expansion of square of continued fraction 1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - ...)))))). - Ilya Gutkovskiy, Apr 19 2017

Extensions

Better name from Philippe Deléham, Mar 21 2005