A082590
Expansion of 1/((1 - 2*x)*sqrt(1 - 4*x)).
Original entry on oeis.org
1, 4, 14, 48, 166, 584, 2092, 7616, 28102, 104824, 394404, 1494240, 5692636, 21785872, 83688344, 322494208, 1246068806, 4825743832, 18726622964, 72798509728, 283443548276, 1105144970992, 4314388905704, 16862208539008, 65972020761116, 258354647959984, 1012627828868072
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Shalosh B. Ekhad and Doron Zeilberger, Automatic Solution of Richard Stanley's Amer. Math. Monthly Problem #11610 and ANY Problem of That Type, arXiv:1112.6207 [math.CO], 2011. See subpages for rigorous derivations of the g.f., the recurrence, asymptotics for this sequence.
- Alejandro Erickson and Frank Ruskey, Enumerating maximal tatami mat coverings of square grids with v vertical dominoes, arXiv:1304.0070 [math.CO], 2013.
- Y. Kamiyama, On the middle dimensional homology classes of equilateral polygon spaces, arXiv:1507.03161 [math.AT], 2015.
-
A082590 := proc(n)
coeftayl( 1/(1-2*x)/sqrt(1-4*x),x=0,n) ;
end proc: # R. J. Mathar, Nov 06 2013
A082590 := n -> 2^n*JacobiP(n, 1/2, -1 - n, 3):
seq(simplify(A082590(n)), n = 0..26); # Peter Luschny, Jan 22 2025
-
CoefficientList[ Series[ 1/((1 - 2*x)*Sqrt[1 - 4*x]), {x, 0, 25}], x] (* Jean-François Alcover, Mar 26 2013 *)
Table[2^(n) JacobiP[n, 1/2, -1-n, 3], {n, 0, 30}] (* Vincenzo Librandi, May 26 2013 *)
A076729
a(n) = A001147(n+1) * Integral_{x=0..1} (1 + x^2)^n dx.
Original entry on oeis.org
1, 4, 28, 288, 3984, 70080, 1506240, 38384640, 1133072640, 38038533120, 1431213235200, 59645279232000, 2726781752217600, 135661078090137600, 7295806823277772800, 421717409630060544000, 26071235813929033728000, 1716456412254215503872000, 119894838461795743137792000
Offset: 0
Al Hakanson (hawku(AT)hotmail.com), Oct 28 2002
For n = 3, (2n+1)!! = 105 and the integral is 96/35 = 288/105, so a(3) = 288.
-
seq((doublefactorial(2*n+1))*add((binomial(n, i))/(2*i+1), i=0..n), n=0..20) ; # John M. Campbell, Feb 06 2016
A076729 := n -> 2^n*n!*JacobiP(n, 1/2, -1 - n, 3):
seq(simplify(A076729(n)), n = 0..18); # Peter Luschny, Jan 22 2025
-
a[n_] := (2n + 1)!!*Integrate[(1 + x^2)^n, {x, 0, 1}]; Table[ a[n], {n, 0, 16}] (* Robert G. Wilson v, Feb 27 2004 *)
Round@Table[-(2 n + 1)!! Im[Beta[2, n + 1, 1/2]]/2, {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Oct 08 2016 *)
nxt[{n_,a_}]:={n+1,2a(n+1)+(2(n+1))!/(n+1)!}; NestList[nxt,{0,1},20][[All,2]] (* Harvey P. Dale, Feb 04 2023 *)
-
a(n)=if(n<0,0,subst(intformal((1+x^2)^n),x,1)*(2*n+1)!/2^n/n!)
A336601
Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords are excluded by (i.e., are outside and do not contain) the marked chord.
Original entry on oeis.org
1, 4, 2, 22, 16, 7, 160, 136, 88, 36, 1464, 1344, 1044, 624, 249, 16224, 15504, 13344, 9624, 5484, 2190, 211632, 206592, 188952, 152832, 104322, 58080, 23535, 3179520, 3139200, 2977920, 2594880, 1990080, 1309680, 725040, 299880, 54092160, 53729280, 52096320, 47681280, 39652560, 29174400, 18809640, 10473120, 4426065
Offset: 1
Triangle begins:
1;
4, 2;
22, 16, 7;
160, 136, 88, 36;
1464, 1344, 1044, 624, 249;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can either be (1,2) and it excludes one other chord, namely (3,4), or vice-versa, hence T(2,1) = 2.
Row sums are n*
A001147(n) for n > 0.
The first column is
A087547(n) for n > 0.
Leading diagonal is
A034430(n-1) for n > 0.
-
CoefficientList[Normal[Series[1/(1-y)/Sqrt[1-2*x]*ArcTan[(x*(1-y))/Sqrt[(1-2*x)]/Sqrt[1-2*y*x]],{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]
A111106
Riordan array (1, x*g(x)) where g(x) is g.f. of double factorials A001147.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 7, 3, 1, 0, 105, 36, 12, 4, 1, 0, 945, 249, 64, 18, 5, 1, 0, 10395, 2190, 441, 100, 25, 6, 1, 0, 135135, 23535, 3807, 691, 145, 33, 7, 1, 0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1
Offset: 0
Rows begin:
1;
0, 1;
0, 1, 1;
0, 3, 2, 1;
0, 15, 7, 3, 1;
0, 105, 36, 12, 4, 1;
0, 945, 249, 64, 18, 5, 1;
0, 10395, 2190, 441, 100, 25, 6, 1:
0, 135135, 23535, 3807, 691, 145, 33, 7, 1;
0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1;
A233481
Number of singletons (strong fixed points) in pair-partitions.
Original entry on oeis.org
0, 1, 4, 21, 144, 1245, 13140, 164745, 2399040, 39834585, 742940100, 15374360925, 349484058000, 8654336615925, 231842662751700, 6679510641428625, 205916703920928000, 6762863294018456625, 235719416966063530500, 8689887736412502745125
Offset: 0
A081054 counts pair-partitions of a fixed size without singletons, i.e., linear chord diagrams with 2n nodes and n arcs in which each arc crosses another arc.
-
a := n -> 2*n*GAMMA(1/2+n)*hypergeom([1/2,-n+1],[3/2],-1)/sqrt(Pi);
seq(simplify(a(n)), n = 0..19); # Peter Luschny, Dec 16 2013
# Alternative:
u := (z/2)^2: egf := 2*u*exp(u)*hypergeom([1/2], [3/2], u): ser := series(egf, z, 40): seq((2*n)!*coeff(ser, z, 2*n), n = 0..19); # Peter Luschny, Mar 14 2023
-
Table[Sum[(2 k - 1)!! (2 n - 2 k - 1)!!, {k, 0, n - 1}], {n,0,30}] (* T. D. Noe, Dec 13 2013 *)
-
def A233481():
a, b, n = 0, 1, 1
while True:
yield a
n += 1
a, b = b, n*((3*n-4)*b/(n-1)-(2*n-3)*a)
a = A233481(); [next(a) for i in range(17)] # Peter Luschny, Dec 14 2013
A331817
a(n) = (n!)^2 * Sum_{k=0..n} (2*k)! / (2^k * (k!)^3 * (n - k)!).
Original entry on oeis.org
1, 2, 9, 66, 681, 9090, 148905, 2889810, 64805265, 1648535490, 46896669225, 1475099460450, 50831084252025, 1904311245686850, 77061447551313225, 3349828945512299250, 155672917524626126625, 7701743926471878533250, 404153655359180645543625
Offset: 0
-
[(Factorial(n))^2*&+[Factorial(2*k)/(2^k*(Factorial(k))^3*Factorial(n-k)):k in [0..n]]:n in [0..18]]; // Marius A. Burtea, Jan 27 2020
-
f:= gfun:-rectoproc({a(n + 2) = 2*(3 + 2*n)*a(n + 1) - 3*(n + 1)^2*a(n), a(0)=1, a(1)=2},a(n), remember):
map(f, [$0..30]); # Robert Israel, Feb 17 2020
-
Table[n!^2 Sum[(2 k)!/(2^k k!^3 (n - k)!), {k, 0, n}], {n, 0, 18}]
nmax = 18; CoefficientList[Series[1/Sqrt[1 - 4 x + 3 x^2], {x, 0, nmax}], x] Range[0, nmax]!
Table[n! Hypergeometric2F1[1/2, -n, 1, -2], {n, 0, 18}]
-
seq(n) = {Vec(serlaplace(1/(sqrt(1 - 4*x + 3*x^2 + O(x*x^n)))))} \\ Andrew Howroyd, Jan 27 2020
A305577
a(n) = Sum_{k=0..n} k!!*(n - k)!!.
Original entry on oeis.org
1, 2, 5, 10, 26, 58, 167, 414, 1324, 3606, 12729, 37674, 145578, 463770, 1944879, 6614190, 29852856, 107616150, 518782545, 1970493210, 10077228270, 40125873690, 216425656215, 899557170750, 5091758227620, 22011865939350, 130202223160905, 583641857191050, 3594820517111250
Offset: 0
-
a:= proc(n) option remember; `if`(n<4, n^2+1,
((3*n^2-4*n-2)*a(n-2) +(n+1)*a(n-3)
-2*a(n-1) -(n-1)^2*n*a(n-4))/(2*n-4))
end:
seq(a(n), n=0..35); # Alois P. Heinz, Jun 14 2018
-
Table[Sum[k!! (n - k)!!, {k, 0, n}], {n, 0, 28}]
nmax = 28; CoefficientList[Series[Sum[k!! x^k, {k, 0, nmax}]^2, {x, 0, nmax}], x]
A173424
Triangle read by rows: T(n, k) = (2*n - 2*k)!*(2*k)!/(2^n*(n - k)!*k!).
Original entry on oeis.org
1, 1, 1, 3, 1, 3, 15, 3, 3, 15, 105, 15, 9, 15, 105, 945, 105, 45, 45, 105, 945, 10395, 945, 315, 225, 315, 945, 10395, 135135, 10395, 2835, 1575, 1575, 2835, 10395, 135135, 2027025, 135135, 31185, 14175, 11025, 14175, 31185, 135135, 2027025, 34459425
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 3, 1, 3;
[3] 15, 3, 3, 15;
[4] 105, 15, 9, 15, 105;
[5] 945, 105, 45, 45, 105, 945;
[6] 10395, 945, 315, 225, 315, 945, 10395;
[7] 135135, 10395, 2835, 1575, 1575, 2835, 10395, 135135;
[8] 2027025, 135135, 31185, 14175, 11025, 14175, 31185, 135135, 2027025;
-
T := (n, k) -> doublefactorial(2*n-1) * binomial(n, k) / binomial(2*n, 2*k):
for n from 0 to 8 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Apr 15 2023
-
t[n_, k_] = (2*n - 2*k)!*(2*k)!/(2^n*(n - k)!*k!);
Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}]; Flatten[%]
Formula added by the Assoc. Editors of the OEIS, Feb 24 2010
A188287
Convolution of A000085 with itself.
Original entry on oeis.org
1, 2, 5, 12, 32, 88, 260, 800, 2604, 8824, 31340, 115568, 443760, 1763456, 7260256, 30835712, 135124496, 609027360, 2822461648, 13417923008, 65401203584, 326242088064, 1664539966400, 8674167861760, 46140838036160, 250248380068736, 1383064482739392, 7782094359642880
Offset: 0
A293470
a(n) = [x^n] (1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - 6*x/(1 - ...))))))))^n, a continued fraction.
Original entry on oeis.org
1, 1, 7, 64, 691, 8506, 117586, 1811902, 30977059, 585159526, 12157511122, 276365651992, 6835179127294, 182885413524568, 5265255383238592, 162296482607602714, 5332203008816278819, 185989603728568482598, 6863252473075010369626, 267102762222709967674384, 10932746393513621360731066
Offset: 0
-
Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-k x, 1, {k, 1, n}])^n, {x, 0, n}], {n, 0, 20}]
Table[SeriesCoefficient[Sum[(2 k - 1)!! x^k, {k, 0, n}]^n, {x, 0, n}], {n, 0, 20}]
Showing 1-10 of 12 results.
Comments