cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A082590 Expansion of 1/((1 - 2*x)*sqrt(1 - 4*x)).

Original entry on oeis.org

1, 4, 14, 48, 166, 584, 2092, 7616, 28102, 104824, 394404, 1494240, 5692636, 21785872, 83688344, 322494208, 1246068806, 4825743832, 18726622964, 72798509728, 283443548276, 1105144970992, 4314388905704, 16862208539008, 65972020761116, 258354647959984, 1012627828868072
Offset: 0

Views

Author

Vladeta Jovovic, May 13 2003

Keywords

Comments

Row sums of A068555 and A112336. - Paul Barry, Sep 04 2005
Hankel transform is 2^n*(-1)^C(n+1,2) (A120617). - Paul Barry, Apr 26 2009
Number of n-lettered words in the alphabet {1, 2, 3, 4} with as many occurrences of the substring (consecutive subword) [1, 2] as of [1, 3]. - N. J. A. Sloane, Apr 08 2012

Crossrefs

Bisection of A226302.

Programs

  • Maple
    A082590 := proc(n)
        coeftayl( 1/(1-2*x)/sqrt(1-4*x),x=0,n) ;
    end proc: # R. J. Mathar, Nov 06 2013
    A082590 := n -> 2^n*JacobiP(n, 1/2, -1 - n, 3):
    seq(simplify(A082590(n)), n = 0..26);  # Peter Luschny, Jan 22 2025
  • Mathematica
    CoefficientList[ Series[ 1/((1 - 2*x)*Sqrt[1 - 4*x]), {x, 0, 25}], x] (* Jean-François Alcover, Mar 26 2013 *)
    Table[2^(n) JacobiP[n, 1/2, -1-n, 3], {n, 0, 30}] (* Vincenzo Librandi, May 26 2013 *)

Formula

a(n) = 2^n*JacobiP(n, 1/2, -1-n, 3).
A034430(n) = (n!/2^n)*a(n). A076729(n) = n!*a(n).
a(n) = Sum_{k=0..n+1} binomial(2*n+2, k) * sin((n - k + 1)*Pi/2). - Paul Barry, Nov 02 2004
From Paul Barry, Sep 04 2005: (Start)
a(n) = Sum_{k=0..n} 2^(n-k)*binomial(2*k, k).
a(n) = Sum_{k=0..n} (2*k)! * (2*(n-k))!/(n!*k!*(n-k)!). (End)
a(n) = Sum_{k=0..n} C(2*n, n)*C(n, k)/C(2*n, 2*k). - Paul Barry, Mar 18 2007
G.f.: 1/(1 - 4*x + 2*x^2/(1 + x^2/(1 - 4*x + x^2/(1 + x^2/(1 - 4*x + x^2/(1 + ... (continued fraction). - Paul Barry, Apr 26 2009
D-finite with recurrence: n*a(n) + 2*(-3*n+1)*a(n-1) + 4*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Dec 03 2012
a(n) ~ 2^(2*n + 1)/sqrt(Pi*n). - Vaclav Kotesovec, Aug 15 2013
a(n) = 2^(n + 1)*Pochhammer(1/2, n+1)*hyper2F1([1/2,-n], [3/2], -1)/n!. - Peter Luschny, Aug 02 2014
a(n) - 2*a(n-1) = A000984(n). - R. J. Mathar, Apr 24 2024
a(n) = 2^n*JacobiP(n, 1/2, -1 - n, 3). - Peter Luschny, Jan 22 2025

A076729 a(n) = A001147(n+1) * Integral_{x=0..1} (1 + x^2)^n dx.

Original entry on oeis.org

1, 4, 28, 288, 3984, 70080, 1506240, 38384640, 1133072640, 38038533120, 1431213235200, 59645279232000, 2726781752217600, 135661078090137600, 7295806823277772800, 421717409630060544000, 26071235813929033728000, 1716456412254215503872000, 119894838461795743137792000
Offset: 0

Views

Author

Al Hakanson (hawku(AT)hotmail.com), Oct 28 2002

Keywords

Comments

Numerator of the integral where denominator is equal to (2n+1)!! = A001147(n+1).
Also numerator of the integral (1-x^2)^-(n+1/2) for x from 0 to sqrt(1/2). Here the sequence starts at n=1; at n=2 the function is 4.
a(n) = Integral_{x=0..log(1+sqrt(2))} cosh(x)^(2*n-1) dx where the denominators are b(n) = (2*n)!/(n!*2^n). E.g., a(3)=28 and b(3)=15; both offsets are 1. - Al Hakanson (hawkuu(AT)excite.com), Mar 02 2004
Self-convolution of A001813. - Vladimir Reshetnikov, Oct 11 2016

Examples

			For n = 3, (2n+1)!! = 105 and the integral is 96/35 = 288/105, so a(3) = 288.
		

Crossrefs

Programs

  • Maple
    seq((doublefactorial(2*n+1))*add((binomial(n, i))/(2*i+1), i=0..n), n=0..20) ; # John M. Campbell, Feb 06 2016
    A076729 := n -> 2^n*n!*JacobiP(n, 1/2, -1 - n, 3):
    seq(simplify(A076729(n)), n = 0..18);  # Peter Luschny, Jan 22 2025
  • Mathematica
    a[n_] := (2n + 1)!!*Integrate[(1 + x^2)^n, {x, 0, 1}]; Table[ a[n], {n, 0, 16}] (* Robert G. Wilson v, Feb 27 2004 *)
    Round@Table[-(2 n + 1)!! Im[Beta[2, n + 1, 1/2]]/2, {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Oct 08 2016 *)
    nxt[{n_,a_}]:={n+1,2a(n+1)+(2(n+1))!/(n+1)!}; NestList[nxt,{0,1},20][[All,2]] (* Harvey P. Dale, Feb 04 2023 *)
  • PARI
    a(n)=if(n<0,0,subst(intformal((1+x^2)^n),x,1)*(2*n+1)!/2^n/n!)

Formula

a(n) = 2*n*a(n-1) + (2*n)!/n!.
a(n) = 2^n*Sum_{k=0..n} A001147(k)*A001147(n-k).
a(n) = (2*n+1)!*Sum_{k=0..n} k!*(-2)^k/((2*k+1)!*(n-k)!).
a(n) = (2*n+1)!!*hypergeom([1/2, -n], [3/2], -1). - Vladeta Jovovic, Dec 05 2002
E.g.f.: 1/((1-2*x)*sqrt(1-4*x)). - Vladeta Jovovic, May 11 2003
G.f.: hypergeom([1,1/2],[],4*x)^2 - Mark van Hoeij, May 16 2013
a(n) ~ 2^(2*n+3/2)*n^n/exp(n). - Vaclav Kotesovec, Oct 05 2013
a(n) = (2n+1)!!*Sum_{i=0..n} binomial(n,i)/(2i+1). - John M. Campbell, Feb 06 2016
From Vladimir Reshetnikov, Oct 08 2016: (Start)
a(n) = 2^n*A034430(n) = -(2*n+1)!! * Im(Beta(2, n+1, 1/2))/2.
Recurrence: 2*(3*n+2)*a(n) = a(n+1) + 4*n*(2*n+1)*a(n-1). (End)
Expansion of square of continued fraction 1/(1 - 2*x/(1 - 4*x/(1 - 6*x/(1 - 8*x/(1 - 10*x/(1 - ...)))))). - Ilya Gutkovskiy, Apr 19 2017
a(n) = 2^n*n!*JacobiP(n, 1/2, -1 - n, 3). - Peter Luschny, Jan 22 2025

A336601 Triangle read by rows: T(n,k) is the number of linear chord diagrams on 2n vertices with one marked chord such that exactly k of the remaining n-1 chords are excluded by (i.e., are outside and do not contain) the marked chord.

Original entry on oeis.org

1, 4, 2, 22, 16, 7, 160, 136, 88, 36, 1464, 1344, 1044, 624, 249, 16224, 15504, 13344, 9624, 5484, 2190, 211632, 206592, 188952, 152832, 104322, 58080, 23535, 3179520, 3139200, 2977920, 2594880, 1990080, 1309680, 725040, 299880, 54092160, 53729280, 52096320, 47681280, 39652560, 29174400, 18809640, 10473120, 4426065
Offset: 1

Views

Author

Donovan Young, Jul 31 2020

Keywords

Examples

			Triangle begins:
     1;
     4,    2;
    22,   16,    7;
   160,  136,   88,  36;
  1464, 1344, 1044, 624, 249;
...
For n = 2 and k = 1, let the four vertices be {1,2,3,4}. The marked chord can either be (1,2) and it excludes one other chord, namely (3,4), or vice-versa, hence T(2,1) = 2.
		

Crossrefs

Row sums are n*A001147(n) for n > 0.
The first column is A087547(n) for n > 0.
Leading diagonal is A034430(n-1) for n > 0.

Programs

  • Mathematica
    CoefficientList[Normal[Series[1/(1-y)/Sqrt[1-2*x]*ArcTan[(x*(1-y))/Sqrt[(1-2*x)]/Sqrt[1-2*y*x]],{x,0,10}]]/.{x^n_.->x^n*n!},{x,y}]

Formula

E.g.f.: arctan(x*(1 - y)/sqrt((1 - 2*x)*(1 - 2*x*y)))/(1 - y)/sqrt(1 - 2*x).

A111106 Riordan array (1, x*g(x)) where g(x) is g.f. of double factorials A001147.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 15, 7, 3, 1, 0, 105, 36, 12, 4, 1, 0, 945, 249, 64, 18, 5, 1, 0, 10395, 2190, 441, 100, 25, 6, 1, 0, 135135, 23535, 3807, 691, 145, 33, 7, 1, 0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1
Offset: 0

Views

Author

Philippe Deléham, Oct 13 2005, Dec 20 2008

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, given by [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] DELTA [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938.

Examples

			Rows begin:
  1;
  0,       1;
  0,       1,      1;
  0,       3,      2,     1;
  0,      15,      7,     3,    1;
  0,     105,     36,    12,    4,    1;
  0,     945,    249,    64,   18,    5,   1;
  0,   10395,   2190,   441,  100,   25,   6,  1:
  0,  135135,  23535,  3807,  691,  145,  33,  7, 1;
  0, 2027025, 299880, 40032, 5880, 1010, 200, 42, 8, 1;
		

Crossrefs

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> doublefactorial(2*n-3)); # Peter Luschny, Oct 19 2022

Formula

T(n, k) = Sum_{j=0..n-k} T(n-1, k-1+j)*A111088(j).
Sum_{k=0..n} T(n, k) = A112934(n).
G.f.: 1/(1-xy/(1-x/(1-2x/(1-3x/(1-4x/(1-... (continued fraction). - Paul Barry, Jan 29 2009
Sum_{k=0..n} T(n,k)*2^(n-k) = A168441(n). - Philippe Deléham, Nov 28 2009

A233481 Number of singletons (strong fixed points) in pair-partitions.

Original entry on oeis.org

0, 1, 4, 21, 144, 1245, 13140, 164745, 2399040, 39834585, 742940100, 15374360925, 349484058000, 8654336615925, 231842662751700, 6679510641428625, 205916703920928000, 6762863294018456625, 235719416966063530500, 8689887736412502745125
Offset: 0

Views

Author

Wojciech Bozejko, Dec 11 2013

Keywords

Comments

For h(V) = number of singletons (non-crossing chords) in the pair-partition of 2n-elementary set P_2(2n), let T(2n) = sum_{V in P_2(2n)} h(V).
Elements of the sequence a(n) = T(2n).
a(n) is the number of linear chord diagrams on 2n vertices with one marked chord such that none of the remaining n-1 chords cross the marked chord, see [Young]. - Donovan Young, Aug 11 2020

Crossrefs

A081054 counts pair-partitions of a fixed size without singletons, i.e., linear chord diagrams with 2n nodes and n arcs in which each arc crosses another arc.

Programs

  • Maple
    a := n -> 2*n*GAMMA(1/2+n)*hypergeom([1/2,-n+1],[3/2],-1)/sqrt(Pi);
    seq(simplify(a(n)), n = 0..19); # Peter Luschny, Dec 16 2013
    # Alternative:
    u := (z/2)^2: egf := 2*u*exp(u)*hypergeom([1/2], [3/2], u): ser := series(egf, z, 40): seq((2*n)!*coeff(ser, z, 2*n), n = 0..19); # Peter Luschny, Mar 14 2023
  • Mathematica
    Table[Sum[(2 k - 1)!! (2 n - 2 k - 1)!!, {k, 0, n - 1}], {n,0,30}] (* T. D. Noe, Dec 13 2013 *)
  • Sage
    def A233481():
        a, b, n = 0, 1, 1
        while True:
            yield a
            n += 1
            a, b = b, n*((3*n-4)*b/(n-1)-(2*n-3)*a)
    a = A233481(); [next(a) for i in range(17)]  # Peter Luschny, Dec 14 2013

Formula

a(n) = T_{2n} = n*sum_{k=0..(n-1)} (2k-1)!!*(2n-2k-1)!!, where (2n-1)!! = 1*3*5*...*(2n-1).
From Peter Luschny, Dec 16 2013: (Start)
E.g.f.: x/((1-x)*sqrt(1-2*x)).
a(n) = 2*n*Gamma(1/2+n)*2_F_1([1/2,-n+1],[3/2],-1)/sqrt(Pi), where 2_F_1 is the hypergeometric function.
a(n) = n*((3*n-4)*a(n-1)/(n-1)-(2*n-3)*a(n-2)) for n>1.
a(n) = n*A034430(n-1) for n>=1.
a(n+1)/(n+1)! = JacobiP(n, 1/2, -n-1, 3).
2^n*a(n+1)/(n+1)! = A082590(n).
2^n*a(n+1)/(n+1) = A076729(n). (End)
a(n) ~ 2^(n+1/2) * n^n / exp(n). - Vaclav Kotesovec, Dec 20 2013
a(n) = (2*n)! * [z^(2*n)] 2*u*exp(u)*hypergeom([1/2], [3/2], u), where u = (z/2)^2. - Peter Luschny, Mar 14 2023

A331817 a(n) = (n!)^2 * Sum_{k=0..n} (2*k)! / (2^k * (k!)^3 * (n - k)!).

Original entry on oeis.org

1, 2, 9, 66, 681, 9090, 148905, 2889810, 64805265, 1648535490, 46896669225, 1475099460450, 50831084252025, 1904311245686850, 77061447551313225, 3349828945512299250, 155672917524626126625, 7701743926471878533250, 404153655359180645543625
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 27 2020

Keywords

Crossrefs

Programs

  • Magma
    [(Factorial(n))^2*&+[Factorial(2*k)/(2^k*(Factorial(k))^3*Factorial(n-k)):k in [0..n]]:n in [0..18]]; // Marius A. Burtea, Jan 27 2020
  • Maple
    f:= gfun:-rectoproc({a(n + 2) = 2*(3 + 2*n)*a(n + 1) - 3*(n + 1)^2*a(n), a(0)=1, a(1)=2},a(n), remember):
    map(f, [$0..30]); # Robert Israel, Feb 17 2020
  • Mathematica
    Table[n!^2 Sum[(2 k)!/(2^k k!^3 (n - k)!), {k, 0, n}], {n, 0, 18}]
    nmax = 18; CoefficientList[Series[1/Sqrt[1 - 4 x + 3 x^2], {x, 0, nmax}], x] Range[0, nmax]!
    Table[n! Hypergeometric2F1[1/2, -n, 1, -2], {n, 0, 18}]
  • PARI
    seq(n) = {Vec(serlaplace(1/(sqrt(1 - 4*x + 3*x^2 + O(x*x^n)))))} \\ Andrew Howroyd, Jan 27 2020
    

Formula

E.g.f.: 1 / sqrt(1 - 4*x + 3*x^2).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * (2*k - 1)!! * (n - k)!.
a(n) = n! * 2F1(1/2, -n; 1; -2).
a(n) ~ 3^(n + 1/2) * n^n / exp(n). - Vaclav Kotesovec, Jan 28 2020
D-finite with recurrence a(n + 2) = 2*(3 + 2*n)*a(n + 1) - 3*(n + 1)^2*a(n). - Robert Israel, Feb 17 2020

A305577 a(n) = Sum_{k=0..n} k!!*(n - k)!!.

Original entry on oeis.org

1, 2, 5, 10, 26, 58, 167, 414, 1324, 3606, 12729, 37674, 145578, 463770, 1944879, 6614190, 29852856, 107616150, 518782545, 1970493210, 10077228270, 40125873690, 216425656215, 899557170750, 5091758227620, 22011865939350, 130202223160905, 583641857191050, 3594820517111250
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 05 2018

Keywords

Comments

Convolution of A006882 with itself.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, n^2+1,
          ((3*n^2-4*n-2)*a(n-2) +(n+1)*a(n-3)
           -2*a(n-1) -(n-1)^2*n*a(n-4))/(2*n-4))
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Jun 14 2018
  • Mathematica
    Table[Sum[k!! (n - k)!!, {k, 0, n}], {n, 0, 28}]
    nmax = 28; CoefficientList[Series[Sum[k!! x^k, {k, 0, nmax}]^2, {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k>=0} k!!*x^k)^2.

A173424 Triangle read by rows: T(n, k) = (2*n - 2*k)!*(2*k)!/(2^n*(n - k)!*k!).

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 15, 3, 3, 15, 105, 15, 9, 15, 105, 945, 105, 45, 45, 105, 945, 10395, 945, 315, 225, 315, 945, 10395, 135135, 10395, 2835, 1575, 1575, 2835, 10395, 135135, 2027025, 135135, 31185, 14175, 11025, 14175, 31185, 135135, 2027025, 34459425
Offset: 0

Views

Author

Roger L. Bagula, Feb 18 2010

Keywords

Examples

			Triangle T(n, k) starts:
  [0]       1;
  [1]       1,      1;
  [2]       3,      1,     3;
  [3]      15,      3,     3,    15;
  [4]     105,     15,     9,    15,   105;
  [5]     945,    105,    45,    45,   105,   945;
  [6]   10395,    945,   315,   225,   315,   945, 10395;
  [7]  135135,  10395,  2835,  1575,  1575,  2835, 10395, 135135;
  [8] 2027025, 135135, 31185, 14175, 11025, 14175, 31185, 135135, 2027025;
		

Crossrefs

Cf. A034430 (row sums), A006882, A001147.

Programs

  • Maple
    T := (n, k) -> doublefactorial(2*n-1) * binomial(n, k) / binomial(2*n, 2*k):
    for n from 0 to 8 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Apr 15 2023
  • Mathematica
    t[n_, k_] = (2*n - 2*k)!*(2*k)!/(2^n*(n - k)!*k!);
    Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}]; Flatten[%]

Formula

T(n, k) = A006882(2*n-2*k-1) * A006882(2*k-1).
T(n, k) = A001147(n-k) * A001147(k).
From Peter Luschny, Apr 15 2023: (Start)
T(n, k) = (1/Pi) * 2^n * Gamma(k + 1/2) * Gamma(n - k + 1/2).
T(n, k) = (2*n-1)!! * binomial(n, k) / binomial(2*n, 2*k). (End)

Extensions

Formula added by the Assoc. Editors of the OEIS, Feb 24 2010

A188287 Convolution of A000085 with itself.

Original entry on oeis.org

1, 2, 5, 12, 32, 88, 260, 800, 2604, 8824, 31340, 115568, 443760, 1763456, 7260256, 30835712, 135124496, 609027360, 2822461648, 13417923008, 65401203584, 326242088064, 1664539966400, 8674167861760, 46140838036160, 250248380068736, 1383064482739392, 7782094359642880
Offset: 0

Views

Author

Groux Roland, Mar 26 2011

Keywords

Comments

a(n) is also the moment of order n for the measure of density: x*exp(-(x-1)^2)*erfi((x-1)/sqrt(2)) over the interval -infinity..infinity, with erfi the Imaginary Error Function.

Crossrefs

Programs

  • PARI
    seq(n)={Vec(serlaplace(exp(x + x^2/2 + O(x*x^n)))^2)} \\ Andrew Howroyd, Nov 04 2019

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n+1,2*k+1)*A034430(k).

Extensions

Terms a(20) and beyond from Andrew Howroyd, Nov 04 2019

A293470 a(n) = [x^n] (1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - 6*x/(1 - ...))))))))^n, a continued fraction.

Original entry on oeis.org

1, 1, 7, 64, 691, 8506, 117586, 1811902, 30977059, 585159526, 12157511122, 276365651992, 6835179127294, 182885413524568, 5265255383238592, 162296482607602714, 5332203008816278819, 185989603728568482598, 6863252473075010369626, 267102762222709967674384, 10932746393513621360731066
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 09 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-k x, 1, {k, 1, n}])^n, {x, 0, n}], {n, 0, 20}]
    Table[SeriesCoefficient[Sum[(2 k - 1)!! x^k, {k, 0, n}]^n, {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ 2^(n + 1/2) * n^(n+1) / exp(n - 1/2). - Vaclav Kotesovec, Sep 16 2021
Showing 1-10 of 12 results. Next