A034694 Smallest prime == 1 (mod n).
2, 3, 7, 5, 11, 7, 29, 17, 19, 11, 23, 13, 53, 29, 31, 17, 103, 19, 191, 41, 43, 23, 47, 73, 101, 53, 109, 29, 59, 31, 311, 97, 67, 103, 71, 37, 149, 191, 79, 41, 83, 43, 173, 89, 181, 47, 283, 97, 197, 101, 103, 53, 107, 109, 331, 113, 229, 59, 709, 61, 367, 311
Offset: 1
Examples
If n = 7, the smallest prime in the sequence 8, 15, 22, 29, ... is 29, so a(7) = 29.
References
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, section 2.12, pp. 127-130.
- P. Ribenboim, The Book of Prime Number Records. Chapter 4,IV.B.: The Smallest Prime In Arithmetic Progressions, 1989, pp. 217-223.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Eric Bach and Jonathan Sorenson, Explicit bounds for primes in residue classes, Mathematics of Computation, 65(216) (1996), 1717-1735.
- Steven R. Finch, Linnik's Constant
- S. Graham, On Linnik's Constant, Acta Arithm. 39, 1981, pp. 163-179.
- I. Niven and B. Powell, Primes in Certain Arithmetic Progressions, Amer. Math. Monthly 83(6) (1976), 467-469.
- R. Thangadurai and A. Vatwani, The least prime congruent to one modulo n, Amer. Math. Monthly 118(8) (2011), 737-742.
Crossrefs
Programs
-
Haskell
a034694 n = until ((== 1) . a010051) (+ n) (n + 1) -- Reinhard Zumkeller, Dec 17 2013
-
Mathematica
a[n_] := Block[{k = 1}, If[n == 1, 2, While[Mod[Prime@k, n] != 1, k++ ]; Prime@k]]; Array[a, 64] (* Robert G. Wilson v, Jul 08 2006 *) With[{prs=Prime[Range[200]]},Flatten[Table[Select[prs,Mod[#-1,n]==0&,1],{n,70}]]] (* Harvey P. Dale, Sep 22 2021 *)
-
PARI
a(n)=if(n<0,0,s=1; while((prime(s)-1)%n>0,s++); prime(s))
Formula
a(n) = min{m: m = k*n + 1 with k > 0 and A010051(m) = 1}. - Reinhard Zumkeller, Dec 17 2013
a(n) = n * A034693(n) + 1. - Joerg Arndt, Oct 18 2020
Comments