A064673 Where the least prime p such that n = (p-1)/(q-1) and p > q is not the least prime == 1 (mod n) (A034694).
24, 32, 34, 38, 62, 64, 71, 76, 80, 92, 94, 104, 110, 117, 122, 124, 129, 132, 144, 149, 152, 154, 159, 164, 167, 182, 184, 185, 188, 201, 202, 206, 212, 214, 218, 220, 225, 227, 236, 242, 244, 246, 252, 264, 269, 272, 274, 286, 290, 294
Offset: 1
Examples
24 is in the sequence because (97-1)/(5-1) whereas the first prime ==1 (Mod 24) is 73. See the comment in A034694 about the multiplier k and it must differ from q-1 or k+1 is not prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local k; for k from n+1 by n do if isprime(k) then return k fi od end proc: filter:= proc(n) local p; p:= f(n); not isprime(1+(p-1)/n) end proc: select(filter, [$1..1000]); # Robert Israel, May 09 2024
-
Mathematica
NextPrim[n_] := (k = n + 1; While[ !PrimeQ[k], k++ ]; k); Do[p = 2; While[q = (p - 1)/n + 1; !PrimeQ[q] || q >= p, p = NextPrim[p]]; k = 1; While[ !PrimeQ[k*n + 1], k++ ]; If[p != k*n + 1, Print[n]], {n, 2, 300} ]
Comments