cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A034708 Numbers for which the sum of reciprocals of digits is an integer.

Original entry on oeis.org

1, 11, 22, 111, 122, 212, 221, 236, 244, 263, 326, 333, 362, 424, 442, 623, 632, 1111, 1122, 1212, 1221, 1236, 1244, 1263, 1326, 1333, 1362, 1424, 1442, 1623, 1632, 2112, 2121, 2136, 2144, 2163, 2211, 2222, 2316, 2361, 2414, 2441, 2488, 2613, 2631, 2666
Offset: 1

Views

Author

Keywords

Comments

Intersection of A214957 and A052382: A214950(a(n))*A168046(a(n)) = 1. - Reinhard Zumkeller, Aug 02 2012

Crossrefs

Programs

  • Haskell
    a034708 n = a034708_list !! (n-1)
    a034708_list = filter ((== 1) . a168046) a214957_list
    -- Reinhard Zumkeller, Aug 02 2012
    
  • Mathematica
    f[ n_ ] := 1/n a[ n_ ] := Apply[ Plus, Map[ f, IntegerDigits[ n ] ] ] Select[ Range[ 1000 ], FreeQ[ IntegerDigits[ # ], 0 ] && IntegerQ[ a [ # ] ] & ] (* Santi Spadaro, Oct 13 2001 *)
    Select[Range[3000],DigitCount[#,10,0]==0 && IntegerQ[Total[ 1/IntegerDigits[#]]]&] (* Harvey P. Dale, May 06 2012 *)
  • PARI
    isok(n) = {my(d = digits(n)); vecmin(d) && denominator(sum(k=1, #d, 1/d[k])) == 1;} \\ Michel Marcus, Feb 12 2016
    
  • Python
    from fractions import Fraction
    def srd(n): return sum(Fraction(1, int(d)) for d in str(n)) # assumes no 0's
    def ok(n): return False if '0' in str(n) else srd(n).denominator == 1
    def aupto(nn): return [m for m in range(1, nn+1) if ok(m)]
    print(aupto(2666)) # Michael S. Branicky, Jan 11 2021